1 research outputs found

    Physiological response of chickpea (Cicer arietinum L.) in symbiosis with arbuscular mycorrhizal fungi under salinity conditions

    Get PDF
    Objective: The effect of salinity by NaCl based on physiological variables of chickpea plants was evaluated with the use of native strains of arbuscular mycorrhizal fungi Glomus cubensis and Rizoglomus irregulare during the pre-flowering phenophase. Design/methodology/approach: The research was carried out under controlled environmental conditions, using as an experimental model the chickpea variety N-29, obtained at INIFAT, Cuba. The treatments consist of the combination of three salinity levels: 25, 50 and 75 mM of NaCl and the respective control (Source of variation A) and two strains of AMFs (source of variation B) for a total of 12 treatments with six repetitions. Treatments were distributed under a completely randomized experimental design. The variables evaluated were: number of green and dry leaves, biomass by organs (leaves, stem, root), net assimilation rate (TAN), relative growth rate (TCR) and leaf area ratio (RAF). Results: Green leaves, TAN and leaf and root biomass were the variables with the highest response in the 50 mM NaCl + R. irregulare treatment, with an average increase of 15% compared to the rest of the treatments. Limitations on study/implications: There is a decrease in the variables evaluated due to the salinity effect, however, chickpea plants subjected to 50 mM NaCl inoculated with R. irregulare were less affected by saline stress. Findings/conclusions: It was also found that the R. irregulare strain contributed more than G. cubense to mitigating the adverse effects of the salinity factor.Objective. Evaluate the effect of salinity due to NaCl on physiological variables of chickpea plants using native strains of arbuscular mycorrhizal fungi (AMF) Glomus cubensis and Rhizoglomus irregulare during the pre-flowering stage. Design/methodology/approach. The research was carried out under controlled weather conditions using the chickpea variety N-29 as an experimental model. The treatments consisted on the combination of four salinity levels: 0, 25, 50 and 75 mM NaCl (variation source A) and AMF (variation source B) in three levels. In total there were 12 treatments with six repetitions, which were distributed in a completely randomized experimental design. The evaluated variables were number of green and dry leaves, dry biomass per organ (leaves, root and stem), net assimilation rate (NAR), relative growth rate (RGR) and leaf area ratio (LAR). Results. The green leaves, the NAR and the dry biomass from roots and leaves, were the variables with the greatest response in the 50 mM NaCl + R. irregulare treatment, with an average increase of 15% with respect to the rest of the treatments. Limitations/implications. A decrease on the evaluated variables was observed due to the salinity effect; however, chickpea plants subjected to NaCl 50 mM inoculated with R. irregulare were less affected by salt stress. Findings/conclusions. The R. irregulare strain was found to contribute more than the G. cubensis to the mitigation of the adverse effects from the salinity factor
    corecore