126 research outputs found

    Conversion of patellofemoral arthroplasty to total knee arthroplasty: A matched case-control study of 13 patients

    Get PDF
    Background and purpose The long-term outcome of patellofemoral arthroplasty is related to progression of femorotibial osteoarthritis with need for conversion to total knee arthroplasty. We investigated whether prior patellofemoral arthroplasty compromises the results of total knee arthroplasty

    ACL reconstruction with unicondylar replacement in knee with functional instability and osteoarthritis

    Get PDF
    Severe symptomatic osteoarthritis in young and active patients with pre-existing deficiency of the anterior cruciate ligament and severe functionally instability is a difficult subgroup to manage. There is considerable debate regarding management of young patients with isolated unicompartment osteoarthritis and concomitant ACL deficiency. A retrospective analysis of was done in 9 patients with symptomatic osteoarthritis with ACL deficiencies and functional instability that were treated with unicompartment knee arthroplasty and ACL reconstruction between April 2002 and June 2005. The average arc of flexion was 119° (range 85° to 135°) preoperatively and 125° (range 105° to 140°). There were no signs of instability during the follow up of patients. No patients in this group were reoperated. In this small series we have shown that instability can be corrected and pain relieved by this combined procedure

    Unicompartmental knee arthroplasty in patients aged less than 65: Combined data from the Australian and Swedish Knee Registries

    Get PDF
    Introduction and purpose: In recent years, there has been renewed interest in using unicompartmental knee arthroplasty (UKA). Several studies have reported increasing numbers of UKAs for osteoarthritis in patients who are less than 65 years of age, with low revision rates. To describe and compare the use and outcome of UKA in this age group, we have combined data from the Australian and Swedish knee registries. Patients and methods: More than 34,000 UKA procedures carried out between 1998 and 2007 were analyzed, and we focused on over 16,000 patients younger than 65 years to determine usage and to determine differences in the revision rate. Survival analysis was used to determine outcomes of revision related to age and sex, using any reason for revision as the endpoint. Results: Both countries showed a decreasing use of UKA in recent years in terms of the proportion of knee replacements and absolute numbers undertaken per year. The 7-year cumulative risk of revision of UKA in patients younger than 65 years was similar in the two countries. Patients younger than 55 years had a statistically significantly higher cumulative risk of revision than patients aged 55 to 64 years (19% and 12%, respectively at 7 years). The risk of revision in patients less than 65 years of age was similar in both sexes. Interpretation: The results of the combined UKA data from the Australian and Swedish registries show a uniformity of outcome between countries with patients aged less than 65 having a higher rate of revision than patients who were 65 or older. Surgeons and patients should be aware of the higher risk of revision in this age group.Annette W-Dahl, Otto Robertsson, Lars Lidgren, Lisa Miller, David Davidson, Stephen Graves

    Metal backed versus all-polyethylene unicompartmental knee arthroplasty: the effect of implant thickness on proximal tibial strain in an experimentally validated finite element model

    Get PDF
    Objectives Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to 3000 ”Δ and > 7000 ”Δ maximum principal (tensile) microstrain was computed. Results Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 ”Δ correlated strongly: R = 0.947, R2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 ”Δ. Conclusion AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection

    What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications

    Get PDF
    Since Böhler published the first categorization of spinal injuries based on plain radiographic examinations in 1929, numerous classifications have been proposed. Despite all these efforts, however, only a few have been tested for reliability and validity. This methodological, conceptual review summarizes that a spinal injury classification system should be clinically relevant, reliable and accurate. The clinical relevance of a classification is directly related to its content validity. The ideal content of a spinal injury classification should only include injury characteristics of the vertebral column, is primarily based on the increasingly routinely performed CT imaging, and is clearly distinctive from severity scales and treatment algorithms. Clearly defined observation and conversion criteria are crucial determinants of classification systems’ reliability and accuracy. Ideally, two principle spinal injury characteristics should be easy to discern on diagnostic images: the specific location and morphology of the injured spinal structure. Given the current evidence and diagnostic imaging technology, descriptions of the mechanisms of injury and ligamentous injury should not be included in a spinal injury classification. The presence of concomitant neurologic deficits can be integrated in a spinal injury severity scale, which in turn can be considered in a spinal injury treatment algorithm. Ideally, a validation pathway of a spinal injury classification system should be completed prior to its clinical and scientific implementation. This review provides a methodological concept which might be considered prior to the synthesis of new or modified spinal injury classifications
    • 

    corecore