137 research outputs found

    Mixing Time Scales in a Supernova-Driven Interstellar Medium

    Get PDF
    We study the mixing of chemical species in the interstellar medium (ISM). Recent observations suggest that the distribution of species such as deuterium in the ISM may be far from homogeneous. This raises the question of how long it takes for inhomogeneities to be erased in the ISM, and how this depends on the length scale of the inhomogeneities. We added a tracer field to the three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing and dispersal in kiloparsec-scale simulations of the ISM with different supernova (SN) rates and different inhomogeneity length scales. We find several surprising results. Classical mixing length theory fails to predict the very weak dependence of mixing time on length scale that we find on scales of 25--500 pc. Derived diffusion coefficients increase exponentially with time, rather than remaining constant. The variance of composition declines exponentially, with a time constant of tens of Myr, so that large differences fade faster than small ones. The time constant depends on the inverse square root of the supernova rate. One major reason for these results is that even with numerical diffusion exceeding physical values, gas does not mix quickly between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots, accepted for publication at Ap

    Prospects for obtaining an r-process from Gamma Ray Burst Disk Winds

    Full text link
    We discuss the possibility that r-process nucleosynthesis may occur in the winds from gamma ray burst accretion disks. This can happen if the temperature of the disk is sufficiently high that electron antineutrinos are trapped as well as neutrinos. This implies accretion disks with greater than a solar mass per second accretion rate, although lower accretion rates with higher black hole spin parameters may provide viable environments as well. Additionally, the outflow from the disk must either have relatively low entropy, e.g. around s = 10, or the initial acceleration of the wind must be slow enough that it is neutrino and antineutrino capture as opposed to electron and positron capture that sets the electron fraction.Comment: 8 pages, submitted to Nucl. Phys. A as part of the Nuclei in Cosmos 8 proceeding

    Pre-galactic metal enrichment - The chemical signatures of the first stars

    Get PDF
    The emergence of the first sources of light at redshifts of z ~ 10-30 signaled the transition from the simple initial state of the Universe to one of increasing complexity. We review recent progress in our understanding of the formation of the first stars and galaxies, starting with cosmological initial conditions, primordial gas cooling, and subsequent collapse and fragmentation. We emphasize the important open question of how the pristine gas was enriched with heavy chemical elements in the wake of the first supernovae. We conclude by discussing how the chemical abundance patterns conceivably allow us to probe the properties of the first stars and subsequent stellar generations, and allow us to test models of early metal enrichment.Comment: 52 pages, 20 figures, clarifications, references added, accepted for publication in the Reviews of Modern Physic

    Supernova Nucleosynthesis in Population III 13 -- 50 MM_{\odot} Stars and Abundance Patterns of Extremely Metal-Poor Stars

    Get PDF
    We perform hydrodynamical and nucleosynthesis calculations of core-collapse supernovae (SNe) and hypernovae (HNe) of Population (Pop) III stars. We provide new yields for the main-sequence mass of MMS=1350M_{\rm MS}=13-50 MM_{\odot} and the explosion energy of E=140×1051E=1-40\times10^{51} ergs to apply for chemical evolution studies. Our HN yields based on the mixing-fallback model of explosions reproduce the observed abundance patterns of extremely metal-poor (EMP) stars (4<[Fe/H]<3-4< {\rm [Fe/H]}< -3), while those of very metal-poor (VMP) stars (3<[Fe/H]<2-3<{\rm [Fe/H]} < -2) are reproduced by the normal SN yields integrated over the Salpeter initial mass function. Moreover, the observed trends of abundance ratios [X/Fe] against [Fe/H] with small dispersions for the EMP stars can be reproduced as a sequence resulting from the various combination of MMSM_{\rm MS} and EE. This is because we adopt the empirical relation that a larger amount of Fe is ejected by more massive HNe. Our results imply that the observed trends with small dispersions do not necessarily mean the rapid homogeneous mixing in the early galactic halo at [Fe/H] <3< -3, but can be reproduced by the ``inhomogeneous'' chemical evolution model. In addition, we examine how the modifications of the distributions of the electron mole fraction YeY_{\rm e} and the density in the presupernova models improve the agreement with observations. In this connection, we discuss possible contributions of nucleosynthesis in the neutrino-driven wind and the accretion disk.Comment: 45 pages, 14 figures. Accepted for publication in the Astrophysical Journal (10 May 2007, v660n2 issue). Moved from Supplements to Part

    Explosive Nucleosynthesis in Hypernovae

    Full text link
    We examine the characteristics of nucleosynthesis in 'hypernovae', i.e., supernovae with very large explosion energies ( \gsim 10^{52} ergs). We carry out detailed nucleosynthesis calculations for these energetic explosions and compare the yields with those of ordinary core-collapse supernovae. We find that both complete and incomplete Si-burning takes place over more extended, lower density regions, so that the alpha-rich freezeout is enhanced and produces more Ti in comparison with ordinary supernova nucleosynthesis. In addition, oxygen and carbon burning takes place in more extended, lower density regions than in ordinary supernovae. Therefore, the fuel elements O, C, Al are less abundant while a larger amount of Si, S, Ar, and Ca ("Si") are synthesized by oxygen burning; this leads to larger ratios of "Si"/O in the ejecta. Enhancement of the mass ratio between complete and incomplete Si-burning regions in the ejecta may explain the abundance ratios among iron-peak elements in metal-poor stars. Also the enhanced "Si"/O ratio may explain the abundance ratios observed in star burst galaxies. We also discuss other implications of enhanced [Ti/Fe] and [Fe/O] for Galactic chemical evolution and the abundances of low mass black hole binaries.Comment: Accepted for publication in the Astrophysical Journal (13 March 2001) Tables 6 - 9 are available at http://www.astron.s.u-tokyo.ac.jp/~nakamura/research/papers/nakamuratab.ps.g

    NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars

    Get PDF
    Aims: Aluminium is a key element to constrain the models of the chemical enrichment and the yields of the first supernovae. But obtaining precise Al abundances in extremely metal-poor (EMP) stars requires that the non-LTE effects be carefully taken into account. Methods: The NLTE profiles of the blue resonance aluminium lines have been computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI applied to an atomic model of the Al atom with 78 levels of Al I and 13 levels of Al II, and compared to the observations. Results: With these new determinations, all the stars of the sample show a ratio Al/Fe close to the solar value: [Al/Fe] =-0.06 +- 0.10 with a very small scatter. These results are compared to the models of the chemical evolution of the halo using different models of SN II and are compatible with recent computations. The sodium-rich giants are not found to be also aluminium-rich and thus, as expected, the convection in these giants only brings to the surface the products of the Ne-Na cycle.Comment: To be published on A&

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    Linking the Metallicity Distribution of Galactic Halo Stars to the Enrichment History of the Universe

    Full text link
    We compare the metallicity distribution of Galactic Halo stars with 3D realizations of hierarchical galaxy formation. Outflows from dwarf galaxies enrich the intergalactic medium inhomogeneously, at a rate depending on the local galaxy density. Consequently, the first stars created in small early-forming galaxies are less metal-rich that the first stars formed in more massive galaxies which typically form later. As most halo stars are likely to originate in accreted dwarfs, while disk stars formed out of outflow-enriched gas, this scenario naturally generates a ``metallicity floor'' for old disk stars, which we find to be roughly coincident with the higher end of our predicted metallicity distribution of halo stars, in agreement with observations. The broad and centrally peaked distribution of halo star metallicities is well reproduced in our models, with a natural dispersion depending on the exact accretion history. Our modeling includes the important ``baryonic stripping'' effect of early outflows, which brush away the tenuously held gas in neighboring pre-virialized density perturbations. This stripping process does not significantly modify the predicted shape of the halo star metal distribution but inhibits star-formation and hence the number of accreted stars, helping to reproduce the observed total Galactic halo luminosity and also the lack of low-luminosity local dwarf galaxies relative to N-body predictions.Comment: 5 pages, 1 figure, ApJ Letters, accepte

    Lead: Asymptotic Giant Branch production and Galactic Chemical Evolution

    Full text link
    The enrichment of Pb in the Galaxy is followed in the framework of a detailed model of Galactic chemical evolution that already proved adequate to reproduce the chemical enrichment of O and of the elements from Ba to Eu. The stellar yields are computed through nucleosynthesis calculations in the Asymptotic Giant Branch (AGB) phase of low- and intermediate-mass stars, covering a wide range of metallicities. The physical parameters of the stellar structure were derived from full stellar evolutionary models previously computed. We show that low-mass AGB stars are the main producers of Pb in the Galaxy, with a complex dependence on metallicity and a maximum efficiency at [Fe/H] ~ -1. Our calculations succeed in reproducing the abundances of Pb isotopes in the solar system: the role attributed by the classical analysis of the s-process to the 'strong component', in order to explain more than 50% of solar 208Pb, is actually played by the high production of Pb in low-mass and low-metallicity AGB stars. We then follow the Galactic chemical evolution of Pb isotopes and give our expectations on the s-process contribution to each of them at the epoch of the solar system formation. Finally, we present new spectroscopic estimates of Pb abundance on a sample of field stars and compare them, together with a few other determinations available, with the predicted trend of [Pb/Fe] in the Galaxy.Comment: Accepted for ApJ, 19 pages, 4 figure
    corecore