5 research outputs found

    Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array

    Get PDF
    In order for Kepler to achieve its required less than 20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on less than 40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in less than 10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moir pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels

    Kepler Mission Stellar and Instrument Noise Properties

    Get PDF
    Kepler Mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity and hence noise levels reproduces the primary intrinsic stellar noise features.Comment: Accepted by ApJ; 26 pages, 20 figure

    PLANETARY CANDIDATES OBSERVED BY KEPLER

    No full text
    corecore