8 research outputs found

    Cardiovascular protective effects of PPARÎł agonists in hypothyroid rats: protection against oxidative stress

    No full text
    Hypothyroidism disturbs redox homeostasis and takes part in cardiovascular system dysfunction. Considering antioxidant and cardio-protective effects of PPAR-γ agonists including pioglitazone (POG) and rosiglitazone (RSG), the present study was aimed to determine the effect of POG or RSG on oxidants and antioxidants indexes in the heart and aorta tissues of Propylthiouracil (PTU)-induced hypothyroid rats. Materials and methods The animals were divided into six groups: (1) Control; (2) propylthiouracil (PTU), (3) PTU-POG 10, (4) PTU-POG 20, (5) PTU-RSG 2, and (6) PTU-RSG 4. Hypothyroidism was induced in rats by giving 0.05% propylthiouracil (PTU) in drinking water for 42 days. The rats of PTU-POG 10 and PTU-POG 20 groups received 10 and 20 mg/kg POG, respectively, besides PTU, and the rats of PTU-RSG 2 and PTU-RSG 4 groups received 2 and 4 mg/kg RSG, respectively, besides PTU. The animals were sacrificed, and the serum of the rats was collected to measure thyroxine level. The heart and aorta tissues were also removed for the measurement of biochemical oxidative stress markers. Results Hypothyroidism was induced by PTU administration, which was indicated by lower serum thyroxine levels. Hypothyroidism also was accompanied by a decrease of catalase (CAT), superoxide dismutase (SOD) activities, and thiol concentration in the heart and aorta tissues while increased level of malondialdehyde (MDA). Interestingly, administration of POG or RSG dramatically reduced oxidative damage in the heart and aorta, as reflected by a decrease in MDA and increased activities of SOD, CAT, and thiol content. Conclusion The results of this study showed that administration of POG or RSG decreased oxidative damage in the heart and aorta tissues induced by hypothyroidism in rats

    The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis.

    No full text
    Gastric cancer is the fourth most common cause of cancer-linked deaths in the world. Gastric tumor cells have biological characteristics such as rapid proliferation, high invasiveness, and drug resistance, which result in recurrence and poor survival. Helicobacter pylori (H. pylori) has been proposed as a first-class carcinogen for gastric cancer according to the 1994 world health organization (WHO) classification. One of the important mechanisms by which H. pylori affects the gastric environment and promotes carcinogenesis is triggering inflammation. H. pylori induces an inflammatory response and a plethora of different signal transduction processes, leading to gastric mucosal disturbance, chronic gastritis, and a multi-step complex pathway that initiates carcinogenesis. It seems undeniable that the interaction between various cell types, including immune cells, gastric epithelium, glands, and stem cells, is vital for the progression and development of carcinogenesis concerning H. pylori. The interactions of H. pylori with surrounding cells play a key role in cancer progression. In this review, we discuss the interplay between H. pylori and tumor-supportive cells, including mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid derived-suppressor cells (MDSCs) in gastric cancer. It is hoped that clarifying the specific mechanisms for 'cross-talk' between H. pylori and these cells will provide promising strategies for developing new treatments

    The effect of HTLV1 infection on inflammatory and oxidative parameters in the liver, kidney, and pancreases of BALB/c mice

    No full text
    Abstract Viral infections are linked to the progression of inflammatory reactions and oxidative stress that play pivotal roles in systemic diseases. To confirm this phenomenon, in the present study, TNF‐α level and oxidative stress markers were examined in the liver, kidney, and pancreas of HTLV1‐infected male BALB/c mice. To this end, twenty BALB/c mice were divided into HTLV1‐infected mice that were inoculated with 1‐million HTLV1‐infected cells (MT‐2), and the control groups. Two months after inoculation, the peripheral blood, mesenteric lymph nodes, liver, kidney, and pancreas were collected after deep anesthetization of mice (ketamine, 30 mg/kg). The extracted DNA of mesenteric lymph nodes was obtained to quantify proviral load (PVL) using quantitative real‐time polymerase chain reaction (qRT‐PCR). The levels of lipid peroxidation, total thiol (SH), nitric oxide (NO), TNF‐α, catalase (CAT), and superoxide dismutase (SOD) activities were examined in the liver, kidney, and pancreases. Furthermore, histopathological changes in the liver and kidney were evaluated. In liver tissue, the levels of MDA, TNF‐α, and blood cell infiltration were significantly increased, and the levels of CAT and SOD were significantly decreased. In the kidney, a reduction in SOD, CAT, and total SH and an increase in MDA and NO were observed. In the pancreas, CAT activity, total SH, and SOD were decreased, and the levels of MDA and NO were enhanced. In terms of TNF‐α production, it has been shown that the level of this inflammatory cytokine was increased in the liver, kidney, and pancreas. The HTLV1 may have a role in inducing inflammatory reactions and oxidative stress pathways in the tissues

    The role of myeloid-derived suppressor cells in rheumatoid arthritis: An update

    No full text
    © 2021 Rheumatoid arthritis (RA) is an autoimmune disease that generally affects the joints. In the late stages of the disease, it can be associated with several complications. Although the exact etiology of RA is unknown, various studies have been performed to understand better the immunological mechanisms involved in the pathogenesis of RA. At the onset of the disease, various immune cells migrate to the joints and increase the recruitment of immune cells to the joints by several immunological mediators such as cytokines and chemokines. The function of specific immune cells in RA is well-established. The shift of immune responses to Th1 or Th17 is one of the most essential factors in the development of RA. Myeloid-derived suppressor cells (MDSCs), as a heterogeneous population of myeloid cells, play a regulatory role in the immune system that inhibits T cell activity through several mechanisms. Various studies have been performed on the function of these cells in RA, which in some cases have yielded conflicting results. Therefore, the purpose of this review article is to comprehensively understand the pro-inflammatory and anti-inflammatory functions of MDSCs in the pathogenesis of RA

    Association of the matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of coronavirus disease 2019 (COVID-19); implications of contribution for development of neurological symptoms in the COVID-19 patients.

    Full text link
    peer reviewed[en] BACKGROUND: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS). METHODS: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted. RESULTS: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs. CONCLUSION: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels
    corecore