18 research outputs found

    Band Alignment, Built-In Potential, and the Absence of Conductivity at the LaCrO3/SrTiO3(001) Heterojunction

    Get PDF
    Core-level and valence-band x-ray photoemission spectra measured for molecular-beam-epitaxy-grown LaCrO3/SrTiO3(001) yield band offsets and potential gradients within the LaCrO3 sufficient to trigger an electronic reconstruction to alleviate the polarity mismatch. Yet, the interface is insulating. Based on first principles calculations, we attribute this unexpected result to interfacial cation mixing combined with charge redistribution within CrO2 layers, enabled by low-lying d states within LaCrO3, which suppresses an electronic reconstruction

    Chromium Segregation at the Grain Boundaries in Ni-Fe-Cr Alloys

    No full text

    Carbon Dioxide-Assisted Fabrication of Highly Uniform Submicron-sized Colloidal Carbon Spheres via Hydrothermal Carbonization Using Soft Drink

    No full text
    An eco-friendly and economical method for the formation of highly uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 A degrees C is reported. Until now, the effect of an extra pressure which is built up by dissolved CO2 on the generation of carbon spheres under hydrothermal condition less than 250 A degrees C hasn't been demonstrated yet. In general, a complicated reactor is required to put overpressure on the autoclave vessel by adding inert gases, whereas the manipulation of a carbonated beverage including fructose and glucose molecules as precursors is favorable to design a simple experimental set-up and to investigate the effect of extra pressure on the growth of carbon spheres under mild hydrothermal condition. Herein, CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In addition, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate hydroxymethylfurfural molecules.X118sciescopu

    Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures

    No full text
    We report a catalytic templating method to synthesize well-controlled three-dimensional carbon nano-architectures. Depending on graphene oxide content, the morphology can be systematically tuned from layered composites to 3D hollow structures to microporous materials. The composites with high surface area and high porosity induce a significant enhancement to its capacitance at high current density.open112022sciescopu
    corecore