2 research outputs found
The gap between clinical gaze and systematic assessment of movement disorders after stroke
Background: Movement disorders after stroke are still captured by clinical gaze and translated to ordinal scores of low resolution. There is a clear need for objective quantification, with outcome measures related to pathophysiological background. Neural and non-neural contributors to joint behavior should be separated using different measurement conditions (tasks) and standardized input signals (force, position and velocity). Methods: We reviewed recent literature for the application of biomechanical and/or elektromyographical (EMG) outcome measures under various measurement conditions in clinical research. Results: Since 2005, 36 articles described the use of biomechanical and/or EMG outcome measures to quantify post-stroke movement disorder. Nineteen of the articles strived to separate neural and non-neural components. Only 6 of the articles measured biomechanical and EMG outcome measures simultaneously, while applying active and passive tasks and multiple velocities. Conclusion: The distinction between neural and non-neural components to separately assess paresis, stiffness and muscle overactivity is not commonplace yet, while a large gap is to be bridged to attain reproducible and comparable results. Pathophysiologically clear concepts, substantiated with a comprehensive and concise measuring protocol will help professionals to identify and treat limiting factors in movement capabilities of poststroke patientsBiomechanical EngineeringMechanical, Maritime and Materials Engineerin
Comprehensive neuromechanical assessment in stroke patients: Reliability and responsiveness of a protocol to measure neural and non-neural wrist properties
Background: Understanding movement disorder after stroke and providing targeted treatment for post stroke patients requires valid and reliable identification of biomechanical (passive) and neural (active and reflexive) contributors. Aim of this study was to assess test-retest reliability of passive, active and reflexive parameters and to determine clinical responsiveness in a cohort of stroke patients with upper extremity impairments and healthy volunteers. Methods: Thirty-two community-residing chronic stroke patients with an impairment of an upper limb and fourteen healthy volunteers were assessed with a comprehensive neuromechanical assessment protocol consisting of active and passive tasks and different stretch reflex-eliciting measuring velocities, using a haptic manipulator and surface electromyography of wrist flexor and extensor muscles (Netherlands Trial Registry number NTR1424). Intraclass correlation coefficients (ICC) and Standard Error of Measurement were calculated to establish relative and absolute test-retest reliability of passive, active and reflexive parameters. Clinical responsiveness was tested with Kruskal Wallis test for differences between groups. Results: ICC of passive parameters were fair to excellent (0.45 to 0.91). ICC of active parameters were excellent (0.88-0.99). ICC of reflexive parameters were fair to good (0.50-0.74). Only the reflexive loop time of the extensor muscles performed poor (ICC 0.18). Significant differences between chronic stroke patients and healthy volunteers were found in ten out of fourteen parameters. Conclusions: Passive, active and reflexive parameters can be assessed with high reliability in post-stroke patients. Parameters were responsive to clinical status. The next step is longitudinal measurement of passive, active and reflexive parameters to establish their predictive value for functional outcome after stroke.Biomechanical EngineeringElectrical Engineering, Mathematics and Computer Scienc