34 research outputs found

    Аналіз стійкості вибійних компоновок на проектній траєкторії

    Get PDF
    Рассмотрены основные причины, оказывающие дестабилизирующее влияние на роботу компоновок низа бурильной колонны. Проведён анализ процесса износа опорноцентрирующих элементов забойной компоновки и его влияния на изменение её конструктивных параметров. Получены графические зависимости, позволяющие оценить степень стойкости различных типов забойных компоновок на проектной траектории. Сделаны основные выводы, касающиеся поведения различных типов компоновок при воздействии на них дестабилизирующих факторовThe basic reasons, causing destabilizing influence on the work of drilling string assembly are reviewed. The analysis of wear out process of strong centralizing elements bottom drilling string assembly and its influence to change of its constructive properties is done. The graphic dependences, giving an opportunity to value the stage of firmness of different types of bottom drilling string assemblies on projected trajectory are given. The conclusion about conduct of different types of drilling string assemblies during influence on it destabilizing factors is draw

    Vanadium-catalyzed, microwave-assisted oxidations with H 2 O 2 in ionic liquids*

    Get PDF
    Abstract: The application of vanadium(V) catalysts in selective oxidation with peroxides offers an efficient procedure that is compatible with different functional groups and leads to good yields and selectivities. However, the search for more efficient and sustainable procedures that employ H 2 O 2 as oxidant remains an important topic. In the last few years, striking results have been obtained by applying microwave (MW) activation in metal-catalyzed reactions carried out in ionic liquids (ILs). In the present study, results achieved with vanadiumbased catalysts in oxidations of various substrates with H 2 O 2 are presented; in particular, epoxidation of alkenes and sulfoxidation of thioethers have been investigated. Notably, in the latter oxidation, a significant improvement in the rate of reaction and an increase in selectivity have been observed in the case of hydrophobic ILs in combination with MW activation

    Biochemical characterization of the carotenoid 1,2-hydratases (CrtC) from Rubrivivax gelatinosus and Thiocapsa roseopersicina

    Get PDF
    Two carotenoid 1,2-hydratase (CrtC) genes from the photosynthetic bacteria Rubrivivax gelatinosus and Thiocapsa roseopersicina were cloned and expressed in Escherichia coli in an active form and purified by affinity chromatography. The biochemical properties of the recombinant enzymes and their substrate specificities were studied. The purified CrtCs catalyze cofactor independently the conversion of lycopene to 1-HO- and 1,1′-(HO)2-lycopene. The optimal pH and temperature for hydratase activity was 8.0 and 30°C, respectively. The apparent Km and Vmax values obtained for the hydration of lycopene were 24 μM and 0.31 nmol h−1 mg−1 for RgCrtC and 9.5 μM and 0.15 nmol h−1 mg−1 for TrCrtC, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed two protein bands of 44 and 38 kDa for TrCrtC, which indicate protein processing. Both hydratases are also able to convert the unnatural substrate geranylgeraniol (C20 substrate), which functionally resembles the natural substrate lycopene

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review

    No full text
    Ursodeoxycholic acid (UDCA) is a pharmaceutical ingredient widely used in clinics. As bile acid it solubilizes cholesterol gallstones and improves the liver function in case of cholestatic diseases. UDCA can be obtained from cholic acid (CA), which is the most abundant and least expensive bile acid available. The now available chemical routes for the obtainment of UDCA yield about 30% of final product. For these syntheses several protection and deprotection steps requiring toxic and dangerous reagents have to be performed, leading to the production of a series of waste products. In many cases the cholic acid itself first needs to be prepared from its taurinated and glycilated derivatives in the bile, thus adding to the complexity and multitude of steps involved of the synthetic process. For these reasons, several studies have been performed towards the development of microbial transformations or chemoenzymatic procedures for the synthesis of UDCA starting from CA or chenodeoxycholic acid (CDCA). This promising approach led several research groups to focus their attention on the development of biotransformations with non-pathogenic, easy-to-manage microorganisms, and their enzymes. In particular, the enzymatic reactions involved are selective hydrolysis, epimerization of the hydroxy functions (by oxidation and subsequent reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each production step. Particular attention is placed on the precursors availability as well as the substrate loading in the process. Potential new routes and recent developments are discussed, in particular on the employment of flow-reactors. The latter technology allows to develop processes with shorter reaction times and lower costs for the chemical and enzymatic reactions involved

    Towards Recyclable NAD(P)H Regeneration Catalysts

    No full text
    Rh(III)-TsDPEN, an immobilized analog of the well-known [Cp*Rh(bpy)(H2O)]2+ was evaluated as a heterogeneous, recyclable regeneration catalyst for reduced oxidoreductase cofactors [NAD(P)H]. Repeated use of this catalyst was established and the catalytic properties were initially investigated. Apparently, Rh(III)-TsDPEN is prone to severe diffusion limitations, necessitating further developments. Overall, a promising concept for chemoenzymatic redox catalysis is proposed, which may overcome some of the current limitations such as catalyst cost and incompatibility of Rh with some biocatalysts
    corecore