3,683 research outputs found

    MODELLING COMPETITIVE SWIMMING IN DIFFERENT STROKES AND DISTANCES UPON REGRESSION ANALYSIS: A STUDY OF THE FEMALE PARTICIPANTS OF SYDNEY 2000 OLYMPIC GAMES

    Get PDF
    The purpose of the study was to obtain the slope and y-intercept of the regression between race component times and race time for a group of top level female swimmers (the best 16 times) in the 2000 Sydney Olympic Games. All the 50, 100 and 200 rn events were analyzed in this study. A multi-camera video recording system (7 cameras) was located on the catwalk 18m above the center lanes of the pool. The regression and correlation coefficients were significant in 78% of the races analyzed, excluded stroke frequency, stroke length and stroke index. The quality of the swimmers analyzed enabled the calculation of the recommended times in each phase in relation to race time. This information may allow top level swimmers to train specifically in their weakest race component

    RELATIONSHIPS BETWEEN STROKE EFFICIENCY MEASURES AND FREESTYLE SWIMMING PERFORMANCE: AN ANALYSIS OF FREESTYLE SWIMMING EVENTS AT THE SYDNEY 2000 OLYMPICS

    Get PDF
    The purpose of this study was to investigate the relationships between measures of stroke efficiency and performance in the freestyle swimming events of the Sydney 2000 Olympics. Measures of variables describing swimming performance were determined from overhead video of the races according to the Australian Institute of Sport protocol. All performances by swimmers in the finals and semifinals were included in the analysis for the 50, 100 and 200 m events and performances for finalists only were analyzed for longer events. A within subjects, repeated measures linear-regression analysis was used to determine relationships. The lack of relationships determined for SI with either swim velocity or performance time in the longer events indicated that the SI was not a good indicator of swimming efficiency for women's freestyle events. In contrast, a predominance of these relationships in the longer events indicated that the SI was possibly an indicator of swimming efficiency for men's freestyle events. SL was not found to be a good predictor of swimming speed or an indicator of swimming efficiency for the freestyle events

    The donor side of Photosystem II as the copper-inhibitory binding site

    Get PDF
    We have measured, under Cu (II) toxicity conditions, the oxygen-evolving capacity of spinach PS II particles in the Hill reactions H2O -> SiMo (in the presence and absence of DCMU) and H2O -> PPBQ, as well as the fluorescence induction curve of Tris-washed spinach PS II particles. Cu (II) inhibits both Hill reactions and, in the first case, the DCMU-insensitive H2O -> SiMo activity. In addition, the variable fluorescence is lowered by Cu (II). We have interpreted our results in terms of a donor side inhibition close to the reaction center. The same polarographic and fluorescence measurements carried out at different pHs indicate that Cu (II) could bind to amino acid residues that can be protonated and deprotonated. In order to reverse the Cu (II) inhibition by a posterior EDTA treatment, in experiments of preincubation of PS II particles with Cu (II) in light we have demonstrated that light is essential for the damage due to Cu (II) and that this furthermore is irreversible.This work was supported by a grant from the Spanish DGICYT (PB94-0116). J.B. Arellano was the recipient of a fellowship from the Spanish Science and Education Ministry.Peer reviewe

    Fixed Effect Estimation of Large T Panel Data Models

    Get PDF
    This article reviews recent advances in fixed effect estimation of panel data models for long panels, where the number of time periods is relatively large. We focus on semiparametric models with unobserved individual and time effects, where the distribution of the outcome variable conditional on covariates and unobserved effects is specified parametrically, while the distribution of the unobserved effects is left unrestricted. Compared to existing reviews on long panels (Arellano and Hahn 2007; a section in Arellano and Bonhomme 2011) we discuss models with both individual and time effects, split-panel Jackknife bias corrections, unbalanced panels, distribution and quantile effects, and other extensions. Understanding and correcting the incidental parameter bias caused by the estimation of many fixed effects is our main focus, and the unifying theme is that the order of this bias is given by the simple formula p/n for all models discussed, with p the number of estimated parameters and n the total sample size.Comment: 40 pages, 1 tabl

    Understanding the Effects of Training on Underwater Undulatory Swimming Performance and Kinematics

    Get PDF
    In swimming, the underwater phase after the start and turn comprises gliding and dolphin kicking, with the latter also known as underwater undulatory swimming (UUS). Swimming performance is highly dependent on the underwater phase; therefore, understanding the training effects in UUS and underwater gliding can be critical for swimmers and coaches. Further, the development of technique in young swimmers can lead to exponential benefits in an athlete’s career. This study aimed to evaluate the effects of a training protocol on UUS and underwater gliding performance and kinematics in young swimmers. Seventeen age group swimmers (boys = 10, girls = 7) performed maximal UUS and underwater gliding efforts before and after a seven-week training protocol. Time to reach 10 m; intra-cyclic mean, peak, and minimum velocities; and gliding performance improved significantly after the training protocol. The UUS performance improvement was mostly produced by an improvement of the upbeat execution, together with a likely reduction of swimmers’ hydrodynamic drag. Despite the changes in UUS and gliding, performance was also likely influenced by growth. The findings from this study highlight kinematic variables that can be used to understand and quantify changes in UUS and gliding performance

    Discovery of > 200 RR Lyrae Variables in M62: An Oosterhoff I Globular Cluster with a Predominantly Blue HB

    Full text link
    We report on the discovery of a large number of RR Lyrae variable stars in the moderately metal-rich Galactic globular cluster M62 (NGC 6266), which places it among the top three most RR Lyrae-rich globular clusters known. Likely members of the cluster in our studied field, from our preliminary number counts, include about 130 fundamental-mode (RRab) pulsators, with = 0.548 d, and about 75 first-overtone (RRc) pulsators, with = 0.300 d. The average periods and the position of the RRab variables with well-defined light curves in the Bailey diagram both suggest that the cluster is of Oosterhoff type I. However, the morphology of the cluster's horizontal branch (HB) is strikingly similar to that of the Oosterhoff type II globular cluster M15 (NGC 7078), with a dominant blue HB component and a very extended blue tail. Since M15 and M62 differ in metallicity by about one dex, we conclude that metallicity, at a fixed HB type, is a key parameter determining the Oosterhoff status of a globular cluster and the position of its variables in the Bailey diagram.Comment: 5 pages, 4 figures. ApJ Letters, in pres

    Multivariate Unified Skew-t Distributions And Their Properties

    Full text link
    The unified skew-t (SUT) is a flexible parametric multivariate distribution that accounts for skewness and heavy tails in the data. A few of its properties can be found scattered in the literature or in a parameterization that does not follow the original one for unified skew-normal (SUN) distributions, yet a systematic study is lacking. In this work, explicit properties of the multivariate SUT distribution are presented, such as its stochastic representations, moments, SUN-scale mixture representation, linear transformation, additivity, marginal distribution, canonical form, quadratic form, conditional distribution, change of latent dimensions, Mardia measures of multivariate skewness and kurtosis, and non-identifiability issue. These results are given in a parametrization that reduces to the original SUN distribution as a sub-model, hence facilitating the use of the SUT for applications. Several models based on the SUT distribution are provided for illustration

    Evolving wormhole geometries within nonlinear electrodynamics

    Get PDF
    In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat, however, for a pure magnetic field the solution is regular. For the (2+1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3+1)-dimensional wormhole solutions, in the presence of an electric field, and the (2+1)-dimensional case coupled to nonlinear electrodynamics.Comment: 17 pages, 1 figure; to appear in Classical and Quantum Gravity. V2: minor corrections, including a referenc

    Upper Thermal Tolerances of Early Life Stages of Freshwater Mussels

    Get PDF
    Freshwater mussels (order Unioniformes) fulfill an essential role in benthic aquatic communities, but also are among the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change, industrial discharges, drought, or land development, could further challenge imperiled unionid communities. The aim of our study was to determine the upper thermal tolerances of the larval (glochidia) and juvenile life stages of freshwater mussels. Glochidia of 8 species of mussels were tested: Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata, Lasmigona complanata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis. Seven of these species also were tested as juveniles. Survival trends were monitored while mussels held at 3 acclimation temperatures (17, 22, and 27°C) were exposed to a range of common and extreme water temperatures (20–42°C) in standard acute laboratory tests. The average median lethal temperature (LT50) among species in 24-h tests with glochidia was 31.6°C and ranged from 21.4 to 42.7°C. The mean LT50 in 96-h juvenile tests was 34.7°C and ranged from 32.5 to 38.8°C. Based on comparisons of LT50s, thermal tolerances differed among species for glochidia, but not for juveniles. Acclimation temperature did not affect thermal tolerance for either life stage. Our results indicate that freshwater mussels already might be living close to their upper thermal tolerances in some systems and, thus, might be at risk from rising environmental temperatures
    corecore