2 research outputs found
Artificial intelligence in estimating fractional flow reserve: a systematic literature review of techniques
Abstract Background Fractional Flow Reserve (FFR) is the gold standard for the functional evaluation of coronary arteries, which is effective in selecting patients for revascularization, avoiding unnecessary procedures, and reducing treatment costs. However, its use is limited due to invasiveness, high cost, and complexity. Therefore, the non-invasive estimation of FFR using artificial intelligence (AI) methods is crucial. Objective This study aimed to identify the AI techniques used for FFR estimation and to explore the features of the studies that applied AI techniques in FFR estimation. Methods The present systematic review was conducted by searching five databases, PubMed, Scopus, Web of Science, IEEE, and Science Direct, based on the search strategy of each database. Results Five hundred seventy-three articles were extracted, and by applying the inclusion and exclusion criteria, twenty-five were finally selected for review. The findings revealed that AI methods, including Machine Learning (ML) and Deep Learning (DL), have been used to estimate the FFR. Conclusion This study shows that AI methods can be used non-invasively to estimate FFR, which can help physicians diagnose and treat coronary artery occlusion and provide significant clinical performance for patients
Recommended from our members
Weather fluctuations: predictive factors in the prevalence of acute coronary syndrome.
Background: Meteorological parameters and seasonal changes can play an important role in the occurrence of acute coronary syndrome (ACS). However, there is almost no evidence on a national level to suggest the associations between these variables and ACS in Iran. We aim to identify the meteorological parameters and seasonal changes in relationship to ACS. Methods: This retrospective cross-sectional study was conducted between 03/19/2015 to 03/18/2016 and used documents and records of patients with ACS in Mazandaran ProvinceHeart Center, Iran. The following definitive diagnostic criteria for ACS were used: (1) existence of cardiac enzymes (CK or CK-MB) above the normal range; (2) Greater than 1 mm ST-segment elevation or depression; (3) abnormal Q waves; and (4) manifestation of troponin enzyme in the blood. Data were collected daily, such as temperature (Celsius) changes, wind speed and its direction, rainfall, daily evaporation rate; number of sunny days, and relative humidity were provided by the Meteorological Organization of Iran. Results: A sample of 2,054 patients with ACS were recruited. The results indicated the highest ACS events from March to May. Generally, wind speed (18 PM) [IRR = 1.051 (95% CI: 1.019 to1.083), P=0.001], daily evaporation [IRR = 1.039 (95% CI: 1.003 to 1.077), P=0.032], daily maximum (P<0.001) and minimum (P=0.003) relative humidity was positively correlated withACS events. Also, negatively correlated variables were daily relative humidity (18 PM) [IRR =0.985 (95% CI: 0.978 to 0.992), P<0.001], and daily minimum temperature [IRR = 0.942 (95%CI: 0.927 to 0.958), P<0.001]. Conclusion: Climate changes were found to be significantly associated with ACS; especially from cold weather to hot weather in March, April and May. Further research is needed to fully understand the specific conditions and cold exposures