16 research outputs found

    Atomically thin p–n junctions with van der Waals heterointerfaces

    Get PDF
    Semiconductor p–n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p–n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p–n junction at the ultimate thickness limit3, 4, 5, 6, 7, 8, 9, 10. Van der Waals junctions composed of p- and n-type semiconductors—each just one unit cell thick—are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions10, 11, 12. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p–n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p–n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p–n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p–n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.Physic

    Coulomb engineering of the bandgap and excitons in two-dimensional materials

    Get PDF
    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents
    corecore