27 research outputs found

    Biofunktionalisierung von ß-Trikalziumphosphat Matrizen mit RGD-Peptiden und Aptameren fĂŒr das Tissue Engineering von Knochen

    Get PDF
    Die Rekonstruktion von Knochendefekten in der Mund-, Kiefer- und Gesichtschirurgie bleibt bis zum heutigen Zeitpunkt eine Herausforderung. Der Goldstandard der Knochenregeneration ist bisher immernoch die Verwendung von autologem Knochengewebe, resultiert in DonormorbiditĂ€ten und ist in der Anwendung limitiert. Eine Alternative ist das Tissue Engineering, bei dem mit geeigneten Biomaterialien und autologen Stammzellen das defekte Gewebe regeneriert werden soll. Das Ziel der vorliegenden Arbeit bestand darin, ein osteoinduktives Biomaterial mit ß-Trikalziumphosphat (ß-TCP) als Kernmaterial zu generieren. ß-TCP weist als Grundmaterial keine funktionellen Gruppen fĂŒr die Kopplung von bioaktiven MolekĂŒlen auf, weswegen eine Ummantelung der Kernmatrix mit Graphenoxid (GO) und Polylaktid-Polyglykolid (PLGA) etabliert wurde. Die OberflĂ€cheneigenschaften der resultierenden 2D OberflĂ€chen und 3D Konstrukte wurde anhand der Rasterelektronenmikroskopie und der Messung der Kontaktwinkel detektiert. Es zeigte sich nach der GO Behandlung eine hydrophile OberflĂ€che, die die Poren der ß-TCP Matrix komplett verdeckte. Um die PorositĂ€t des ß-TCP Materials beizubehalten wurde deswegen PLGA fĂŒr weitere Biofunktionalisierungen gewĂ€hlt. Es wurden zwei verschiedene AnsĂ€tze verfolgt. Ein Ansatz beinhaltete die Immobilisierung von RGD-Peptiden, die ĂŒber einen Poly-L-Lysin-Platzhalter an die OberflĂ€chen/Konstrukte immobilisiert wurden. Diese Modifikation resultierte in einer verstĂ€rkten AdhĂ€sion auf 2D OberflĂ€chen, jedoch nicht in einer verstĂ€rkten Proliferation und einer vermehrten Mineralisierung auf 2D oder 3D Kultivierungsebene. Der zweite Ansatz beinhaltete die Immobilisierung eines in vorherigen Arbeiten generierten Aptamers auf der OberflĂ€che der PLGA-beschichteten OberflĂ€chen/Konstrukte. Die Versuche der Stabilisierung der Aptamere durch verschiedene Modifikationen scheiterte an der Verminderung der BindungsaffinitĂ€t des Aptamers an die humanen Kieferperiostzellen, weswegen mit dem unmodifizierten MolekĂŒl fortgefahren wurde. Die BindungskrĂ€fte zwischen dem Aptamer 74 und den humanen Kieferperiostzellen wurde durch die Rasterkraftspektroskopie charakterisiert. Hier zeigten sich stĂ€rkere BindungskrĂ€fte an osteogen-induzierte Zellen im Vergleich zu nicht induzierten, unbehandelten Zellen. In-vitro Analysen der auf den biofunktionalisierten OberflĂ€chen/Konstrukten wachsenden Zellen zeigten eine leicht verstĂ€rkte AdhĂ€sion auf der 3D Kultivierungsebene. BezĂŒglich der Proliferation und der MineralisierungskapazitĂ€t konnten keine verstĂ€rkenden Effekte beobachtet werden. In der vorliegenden Studie konnten wir zusammenfassend eine Strategie zur Biofunktionalsierung des anorganischen ß-TCP Materials etablieren, ohne die OberflĂ€che der Kernmatrix maßgeblich zu verĂ€ndern. In zukĂŒnftigen Studien sollten die Immobilisierungseffizienzen optimiert werden, weitere BiomolekĂŒle immobilisiert werden und die BiokompatibilitĂ€t der in-vitro generierten Konstrukte ermittelt werden

    Development of biofunctionalized implants for human jaw periosteal cells

    No full text
    Gezielter Kieferknochenaufbau (Kieferknochenaugmentation) findet bei Lippen-, Kiefer- und Gaumenspalten, nach Tumorresektionen, Kieferatrophien und Knochenzysten seine Anwendung. Der Goldstandard ist bisher immer noch die Verwendung von autologem Knochenmaterial, was jedoch zwangslĂ€ufig zu Schwierigkeiten an der Entnahmestelle (DonormorbiditĂ€t) bezĂŒglich der Menge des entnommenen Materials, des Infektionsrisikos und der SchwĂ€chung des Knochens an dieser Stelle fĂŒhrt. Dieses Problem soll durch Tissue Engineering-AnsĂ€tze, die einerseits die Verwendung von autologen Stammzellen und andererseits von geeigneten TrĂ€germatrizen beinhalten, umgangen werden. Ziel dieser Studie war es, ein biofunktionalisiertes Implantat, besiedelt mit humanen Kieferperiostzellen (JPCs) zu generieren, das die AdhĂ€sions-, Proliferations- und DifferenzierungskapazitĂ€t der JPCs verstĂ€rkt. Dies sollte anhand zwei verschiedener Verfahren realisiert werden. Die erste Variante beinhaltete die Funktionalisierung von Polylaktid-TrĂ€germatrizen mit verschiedenen RGD Peptiden (Peptide zusammengesetzt aus drei AminosĂ€uren: Arginin-Glycin-AsparaginsĂ€ure, abgekĂŒrzt mit RGD) anhand verschiedener Beschichtungsvarianten. Die erzielten Ergebnisse zeigten, dass die Beschichtung mit zyklischen Peptiden auf 3D Ebene ein schwaches AdhĂ€sions- und Proliferationsverhalten der JPCs zur Folge hatte, im Gegensatz zu den dicht besiedelten, indirekt beschichteten Konstrukten mit Poly-L-Lysin als Platzhalter (Spacer) fĂŒr die Zellen. Durch Genexpressionsanalysen sowie elektronenmikro-skopische Aufnahmen und Elementanalysen konnte ebenfalls belegt werden, dass die osteogene Differenzierbarkeit der JPCs innerhalb der indirekt beschichteten Polylaktid-Matrizen am stĂ€rksten ausgeprĂ€gt war. DarĂŒber hinaus konnte gezeigt werden, dass die in der vorliegenden Arbeit entwickelte RGD Biofunktio-nalisierunsmethode sich optimal fĂŒr die VerstĂ€rkung der Zellparameter wie AdhĂ€sion und Proliferation der JPCs eignete. Ein zweiter Ansatz zur OberflĂ€chenbeschichtungen von Tissue Engineering-Konstrukten war die Generierung eines Oligonukleotids (Aptamer), das hochaffin an humane Kieferperiostzellen binden und eine Progenitor-Subpopulation aus dem Gesamtzellverband anreichern konnte. Über einen in vitro Selektionsprozess (SELEX) wurde aus einem Startpool von ca. 1015 80 bp langen Oligonukleotidsequenzen erstmals ein Aptamer generiert, das vermehrt an osteogen-nicht jedoch an adipogen- und chondrogen andifferenzierte Zellen binden konnte, und auch nur mit geringerer AffinitĂ€t an nicht induzierte JPCs bzw. andere getestete Zelltypen. Die BindungsaffinitĂ€t war donorabhĂ€ngig und hing nicht vom in vitro Kalzifizierungspotential der Patienten ab. Allerdings konnte belegt werden, dass mesenchymale Stammzellen aus dem Knochenmark und der Plazenta im osteogen andifferenzieren Zustand ebenso an das Aptamer binden konnten. Bei der Untersuchung des Mineralisierungspotentials der Aptamer-positiven im Vergleich zur Aptamer-negativen Fraktion konnten keine signifikanten Unterschiede der beiden Fraktionen festgestellt werden. Der Biofunktionalisierungsansatz anhand der Aptamere stellte eine völlig neuartige Methode im Tissue Engineering Bereich dar und zeigt Potential zur Weiterentwicklung. Nach den bisher durchgefĂŒhrten Analysen scheint das Aptamer 74 bisher noch keine besonderen Vorteile gegenĂŒber der Methode der RGD-Peptidbeschichtung zu haben. Als Schlussfolgerung dieser Studien kann fest-gehalten werden, dass die indirekte RGD-Beschichtung ĂŒber Poly-L-Lysin eine fĂŒr das Knochen Tissue Engineering Ă€ußerst geeignete Methode darstellt. Im nĂ€chsten Schritt der in vivo Analyse muss dieses Verfahren seine klinische Relevanz unter Beweis stellen.The applications of jaw bone augmentations are cleft lip and palates, bone cysts, bone defects after tumor resections and bone atrophies and the regeneration strategies in these regions gain more and more importance nowadays. The gold standard still remains the use of autologous bone, which automatically leads to considerable donor morbidities at the donor site. Using tissue engineering, a lot of efforts were done to overcome these problems by analyzing different scaffolding materials, cell sources and enhancing factors (growth factors, angiogenesis factors). The aim of this study was to generate a biofunctionalized implant, which is able to enhance JPC adhesion, proliferation and differentiation into osteogenic tissue. This was realized by two different approaches. For the first approach, constructs were coated with different RGD peptides and different coating variants. We obtained poor adhesion and proliferation rates of cells growing on cyclic peptide coated scaffolds. Best results for cell adhesion and proliferation were achieved by indirect coating via PLL. Gene expression analyses, electron microscopy and EDX spectroscopy revealed, that cells growing within indirect coated constructs were able to mineralize in vitro and showed the highest level of mineralization. The obtained results indicated that this method for surface coating of biomaterials is a suitable way for biofunctionalizing scaffolds to enhance jaw periosteal cells adhesion and proliferation. The second approach for surface coating of tissue engineering constructs was to generate a specific oligonucleotide for human jaw periosteal cells that can bind and enrich the osteogenic progenitor cells out of the heterogeneous cell population. By an in vitro selection process (SELEX), an aptamer was generated out of a starting library of about 1015 different 80 bp oligonucleotide sequences that can bind to early osteogenic differentiated, but not to adipogenic or chondrogenic differentiated and only weakly to undifferentiated JPCs and also not to any other tested cell types. The amount of positive labelled cells evaluated by flow cytometry was shown to be donor dependent and independent of the patients’ in vitro mineralizing potential. However, testing the binding affinity to other mesenchymal stem cells derived from bone marrow and placenta showed a similar pattern as detected in osteogenic differentiated periosteal cells. In order to evaluate the mineralizing capacity of the aptamer 74-positive in comparison to the negative fraction, the JPCs were sorted and we could not find any significant differences between those two fractions. The biofuncionalization through aptamers is a novel approach in tissue engineering applications and shows a high potential to further development. After the studies done so far, the aptamer 74 does not seem to have any special advantages towards the RGD coating method. Summarizing these results, we can postulate that the indirect coating of linear RGD peptides via a PLL spacer represents a suitable method for surface coating in bone tissue engineering. In the next steps, these constructs have to prove their clinical relevance in an in vivo model

    Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium.

    Get PDF
    The goal of our research work is to establish mesenchymal osteoprogenitors derived from human jaw periosteum for tissue engineering applications in oral and maxillofacial surgery. For future autologous and/or allogeneic transplantations, some issues must be addressed. On the one hand, animal-free culture conditions have yet to be established. On the other hand, attempts should be undertaken to shorten the in vitro culturing process efficiently. The aim of the present study is to compare and analyze the phenotype of osteoprogenitors from the jaw periosteum under normal FCS-containing and animal-free culture conditions. Therefore, we analyzed the proliferation rates of MesenCult-XF medium (MC-) in comparison to DMEM-cultured JPCs. Whereas jaw periosteal cells (JPCs) show relatively slow proliferation rates and a fibroblastoid shape under DMEM culture conditions, MC-cultured JPCs diminished their cell size significantly and proliferated rapidly. By live-monitoring measurements of adhesion and proliferation, we made an interesting observation: whereas the proliferation of the MSCA-1(+) subpopulation and the unseparated cell fraction were favored by the animal-free culture medium, the proliferation of the MSCA-1(-) subpopulation seemed to be repressed under these conditions. The alkaline phosphatase expression pattern showed similar results under both culture conditions. Comparison of the mineralization capacity revealed an earlier formation of calcium-phosphate precipitates under MC culture conditions; however, the mineralization capacity of the DMEM-cultured cells seemed to be higher. We conclude that the tested animal-free medium is suitable for the in vitro expansion and even for the specific selection of osteoprogenitor cells derived from the jaw periosteum

    Phenotypic Characterization of a Human Immortalized Cranial Periosteal Cell Line

    No full text
    Background/Aims: Human cell material for basic research work is limited due to restricted patient numbers and occurring cell senescence during prolonged in vitro cell cultivation. In the present study, we established for the first time a human immortalized cranial periosteal cell line and characterized its phenotype in detail in comparison to that of parental cells. Methods: For this purpose, human primary cranial periosteal cells were stably transduced with the large T antigen cDNA from polyomavirus SV40 (TAg cells). Results: The functional activity of the large T antigen was demonstrated by human telomerase gene expression. Whereas TAg cells maintained long-term cell proliferation, immortalization did not compromise their osteogenic differentiation potential. In contrast, TAg cells showed an earlier and stronger mineralization compared to parental cells. Among the analysed stem cell surface markers, CD146 and MSCA-1 (mesenchymal stem cell antigen-1) were shown to be elevated in Tag cells. Gene expression analyses revealed in general higher constitutive m-RNA levels of key factors of osteogenesis than in parental cells. Conclusion: We conclude that the herein generated cell line represents a suitable cell source for basic science research studying bone biology, the osteogenesis process or biomaterial tests for bone regeneration purposes

    Quantitative analysis of gene expression levels in DMEM- and MC-XF-cultured JPCs at day 5 and 10 of osteogenesis (of passage 6, n = 4).

    No full text
    <p>Induction indices (x-fold) and significance values of alkaline phosphatase, Runx-2, type I collagen (alpha1-chain) and osteoprotegerin in osteogenic induced in comparison to untreated cells under both culture conditions are illustrated.</p

    Quantification of MSCA-1<sup>+</sup> cells under DMEM- and MC-XF culturing conditions by FACS analysis.

    No full text
    <p>Unseparated JPCs were plated in culture dishes in DMEM medium. For the first test runs, cells were maintained in DMEM medium whereas the second series underwent stepwise FCS reduction and convertion to MC-XF medium. At the same time points (day 2, 5 and 9 after conversion from DMEM to MC-XF culture conditions), cells were detached from the dishes and the percentages of MSCA-1<sup>+</sup> cells were determined by FACS analysis. Significant higher amounts of MSCA-1<sup>+</sup> cells were detected under MC-XF culturing conditions at day 2 and 5 (p<0.01 and p<0.05).</p

    Identification of an Aptamer Binding to Human Osteogenic-Induced Progenitor Cells

    No full text
    The aim of this study was to generate a specific aptamer against human jaw periosteal cells (JPCs) for tissue engineering applications in oral and maxillofacial surgery. This aptamer should serve as a capture molecule to enrich or even purify osteogenic progenitor cells from JPCs or from adult stem cells of other sources. Using systematic evolution of ligands by exponential enrichment (SELEX), we generated the first aptamer to specifically bind to human osteogenically induced JPCs. We did not detect any binding of the aptamer to undifferentiated JPCs, adipogenically and chondrogenically induced JPCs, or to any other cell line tested. However, similar binding patterns of the identified aptamer 74 were detected with mesenchymal stromal cells (MSCs) derived from placental tissue and bone marrow. After cell sorting, we analyzed the expression of osteogenic marker genes in the aptamer 74-positive and aptamer 74-negative fractions and detected no significant differences. Additionally, the analysis of the mineralization capacity revealed a slight tendency for the aptamer positive fraction to have a higher osteogenic potential. In terms of proliferation, JPCs growing in aptamer-coated wells showed increased proliferation rates compared with the controls. Herein, we report the development of an innovative approach for tissue engineering applications. Further studies should be conducted to modify and improve the specificity of the generated aptamer

    Life-monitoring measurements of cell proliferation by unseparated and MSCA-1-separated JPCs using the x-CELLigence system (representative curve progression of cells derived from one donor).

    No full text
    <p>Cells (of passage 5) were seeded into E-plates for the life-measurements of cell impedance following the same experimental procedures as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0081674#pone-0081674-g001" target="_blank">fig. 1</a> (gradual FCS reduction and addition of the MC-XF culture medium). Note the preferential proliferation activation of the MSCA-1<sup>+</sup> subpopulation (pink line) in contrast to the rather restrictive capacity of the xenogeneic-free culture medium on MSCA-1<sup>−</sup> JPCs (violet line). The lower panel of the figure illustrates representative histograms of MSCA-1 expression by flow cytometry before (unsep.) or after the magnetic separation of the MSCA-1+/− fractions.</p

    Life-monitoring measurements of cell proliferation by unseparated JPCs using the x-CELLigence system (ACEA Biosciences).

    No full text
    <p>JPCs of passage 4 derived from two different donors were seeded into special E-plates in DMEM/F12/10%FCS culture medium. Two days later (44 hours - each tick of the scale corresponds to 11 hours), a gradual FCS reduction was performed in one-half of the test runs (green and dark green), whereas the other half of the wells was further cultivated in DMEM/F12/10%FCS (red and coral). Nine days (297 hours) after the initiation of FCS reduction, MC-XF culture medium was added to the cells. The proliferation curve progression of DMEM-cultured JPCs (from two representative patients) is highlighted in red and coral and that of MC-XF-cultivated cells is highlighted in dark green and green. The right panel of the figure shows the cell morphology of DMEM- and MC-XF-cultured JPCs. Note the reduced cell size under MC-XF culture conditions (on uncoated dishes) leading to the significant decrease of cell impedance immediately after the addition of the MC-XF culture medium.</p
    corecore