30 research outputs found

    Intelligence and semen quality are positively correlated

    Get PDF
    Human cognitive abilities inter-correlate to form a positive matrix, from which a large first factor, called 'Spearman's g' or general intelligence, can be extracted. General intelligence itself is correlated with many important health outcomes including cardio-vascular function and longevity. However, the important evolutionary question of whether intelligence is a fitnessrelated trait has not been tested directly, let alone answered. If the correlations among cognitive abilities are part of a larger matrix of positive associations among fitness-related traits, then intelligence ought to correlate with seemingly unrelated traits that affect fitness-such as semen quality. We found significant positive correlations between intelligence and 3 key indices of semen quality: log sperm concentration (r = .15, p = .002), log sperm count (r =.19, p b .001), and sperm motility (r = .14, p = .002) in a large sample of US Army Veterans. None was mediated by age, body mass index, days of sexual abstinence, service in Vietnam, or use of alcohol, tobacco, marijuana, or hard drugs. These results suggest that a phenotype-wide fitness factor may contribute to the association between intelligence and health. Clarifying whether a fitness factor exists is important theoretically for understanding the genomic architecture of fitness-related traits, and practically for understanding patterns of human physical and psychological health

    Genetic influence on family socioeconomic status and children's intelligence

    Get PDF
    Environmental measures used widely in the behavioral sciences show nearly as much genetic influence as behavioral measures, a critical finding for interpreting associations between environmental factors and children's development. This research depends on the twin method that compares monozygotic and dizygotic twins, but key aspects of children's environment such as socioeconomic status (SES) cannot be investigated in twin studies because they are the same for children growing up together in a family. Here, using a new technique applied to DNA from 3000 unrelated children, we show significant genetic influence on family SES, and on its association with children's IQ at ages 7 and 12. In addition to demonstrating the ability to investigate genetic influence on between-family environmental measures, our results emphasize the need to consider genetics in research and policy on family SES and its association with children's IQ

    The association between intelligence and lifespan is mostly genetic

    Get PDF
    Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the genetics of intelligence, lifespan or inequalities in health outcomes including lifespan

    Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (<i>N</i>=112 151) and 24 GWAS consortia

    Get PDF
    Causes of the well-documented association between low levels of cognitive functioning and many adverse neuropsychiatric outcomes, poorer physical health and earlier death remain unknown. We used linkage disequilibrium regression and polygenic profile scoring to test for shared genetic aetiology between cognitive functions and neuropsychiatric disorders and physical health. Using information provided by many published genome-wide association study consortia, we created polygenic profile scores for 24 vascular–metabolic, neuropsychiatric, physiological–anthropometric and cognitive traits in the participants of UK Biobank, a very large population-based sample (N=112 151). Pleiotropy between cognitive and health traits was quantified by deriving genetic correlations using summary genome-wide association study statistics and to the method of linkage disequilibrium score regression. Substantial and significant genetic correlations were observed between cognitive test scores in the UK Biobank sample and many of the mental and physical health-related traits and disorders assessed here. In addition, highly significant associations were observed between the cognitive test scores in the UK Biobank sample and many polygenic profile scores, including coronary artery disease, stroke, Alzheimer’s disease, schizophrenia, autism, major depressive disorder, body mass index, intracranial volume, infant head circumference and childhood cognitive ability. Where disease diagnosis was available for UK Biobank participants, we were able to show that these results were not confounded by those who had the relevant disease. These findings indicate that a substantial level of pleiotropy exists between cognitive abilities and many human mental and physical health disorders and traits and that it can be used to predict phenotypic variance across samples

    Person-Specific Non-shared Environmental Influences in Intra-individual Variability : A Preliminary Case of Daily School Feelings in Monozygotic Twins

    Get PDF
    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle

    Genes Influence Young Children's Human Figure Drawings and Their Association With Intelligence a Decade Later

    Get PDF
    Drawing is ancient; it is the only childhood cognitive behavior for which there is any direct evidence from the Upper Paleolithic. Do genes influence individual differences in this species-typical behavior, and is drawing related to intelligence (g) in modern children? We report on the first genetically informative study of children’s figure drawing. In a study of 7,752 pairs of twins, we found that genetic differences exert a greater influence on children’s figure drawing at age 4 than do between-family environmental differences. Figure drawing was as heritable as g at age 4 (heritability of.29 for both). Drawing scores at age 4 correlated significantly with g at age 4 (r =.33,

    Scant evidence for Spearman’s law of diminishing returns in middle childhood

    Get PDF
    In 1927, Charles Spearman suggested that general cognitive ability, or g, might be stronger at the low end of ability. We explored the manifold of g across the ability distribution in a large sample (range >800 to >4000 individuals) of British twins assessed longitudinally at 7, 9 and 10 years old using two verbal and two nonverbal tests at each age, thus testing effects of age on the saturation of g. We rankit-normalized the test scores, then used a median split on the test with the highest factor-loading. We derived the first principal component from the remaining three tests. We performed each analysis for the whole sample (within age) and also separately by sex. The first principal component explains more variance in g in the low ability group at every age and in both sexes separately but the F ratio eigenvalues show that, except at age 7 and principally in females, the difference between the low and high ability groups is not significant

    An all-positive correlation matrix is not evidence of domain-general intelligence

    No full text
    We welcome the cross-disciplinary approach taken by Burkart et al. to probe the evolution of intelligence. We note several concerns: the uses of g and G, rank-ordering species on cognitive ability, and the meaning of general intelligence. This subject demands insights from several fields, and we look forward to cross-disciplinary collaborations

    A general intelligence factor in dogs

    No full text
    Hundreds of studies have shown that, in people, cognitive abilities overlap yielding an underlying ‘g’ factor, which explains much of the variance. We assessed individual differences in cognitive abilities in 68 border collies to determine the structure of intelligence in dogs. We administered four configurations of a detour test and repeated trials of two choice tasks (point-following and quantity-discrimination). We used confirmatory factor analysis to test alternative models explaining test performance. The best-fitting model was a hierarchical model with three lower-order factors for the detour time, choice time, and choice score and a higher order factor; these accounted jointly for 68% of the variance in task scores. The higher order factor alone accounted for 17% of the variance. Dogs that quickly completed the detour tasks also tended to score highly on the choice tasks; this could be explained by a general intelligence factor. Learning about g in non human species is an essential component of developing a complete theory of g; this is feasible because testing cognitive abilities in other species does not depend on ecologically relevant tests. Discovering the place of g among fitness-bearing traits in other species will constitute a major advance in understanding the evolution of intelligence
    corecore