15 research outputs found

    Common Origin of Soft mu-tau and CP Breaking in Neutrino Seesaw and the Origin of Matter

    Full text link
    Neutrino oscillation data strongly support mu-tau symmetry as a good approximate flavor symmetry of the neutrino sector, which has to appear in any viable theory for neutrino mass-generation. The mu-tau breaking is not only small, but also the source of Dirac CP-violation. We conjecture that both discrete mu-tau and CP symmetries are fundamental symmetries of the seesaw Lagrangian (respected by interaction terms), and they are only softly broken, arising from a common origin via a unique dimension-3 Majorana mass-term of the heavy right-handed neutrinos. From this conceptually attractive and simple construction, we can predict the soft mu-tau breaking at low energies, leading to quantitative correlations between the apparently two small deviations \theta_{23} - 45^o and \theta_{13} - 0^o. This nontrivially connects the on-going measurements of mixing angle \theta_{23} with the upcoming experimental probes of \theta_{13}. We find that any deviation of \theta_{23} - 45^o must put a lower limit on \theta_{13}. Furthermore, we deduce the low energy Dirac and Majorana CP violations from a common soft-breaking phase associated with mu-tau breaking in the neutrino seesaw. Finally, from the soft CP breaking in neutrino seesaw we derive the cosmological CP violation for the baryon asymmetry via leptogenesis. We fully reconstruct the leptogenesis CP-asymmetry from the low energy Dirac CP phase and establish a direct link between the cosmological CP-violation and the low energy Jarlskog invariant. We predict new lower and upper bounds on the \theta_{13} mixing angle, 1^o < \theta_{13} < 6^o. In addition, we reveal a new hidden symmetry that dictates the solar mixing angle \theta_12 by its group-parameter, and includes the conventional tri-bimaximal mixing as a special case, allowing deviations from it.Comment: 60pp, JCAP in Press, v2: only minor stylistic refinements (added Daya Bay's future sensitivity in Figs.2+8, shortened some eqs, added new Appendix-A and some references), comments are welcome

    Neutrino Beams From Electron Capture at High Gamma

    Get PDF
    We investigate the potential of a flavor pure high gamma electron capture electron neutrino beam directed towards a large water cherenkov detector with 500 kt fiducial mass. The energy of the neutrinos is reconstructed by the position measurement within the detector and superb energy resolution capabilities could be achieved. We estimate the requirements for such a scenario to be competitive to a neutrino/anti-neutrino running at a neutrino factory with less accurate energy resolution. Although the requirements turn out to be extreme, in principle such a scenario could achieve as good abilities to resolve correlations and degeneracies in the search for sin^2(2 theta_13) and delta_CP as a standard neutrino factory experiment.Comment: 21 pages, 7 figures, revised version, to appear in JHEP, Fig.7 extended, minnor changes, results unchange

    The Last Neutrino Mixing angle theta13

    Full text link
    Among the still unmeasured neutrino properties, the third neutrino mixing angle, theta13, is likely to be the one we will next find out. In this contribution, first a brief summary of the limits and the preliminary measurements of this angle is given. Second a critical assessment of a widely used formula connecting two- and three-flavor evolution is provided.Comment: Proceedings of "Nuclear Physics in Astrophysics V, April 2011", Eliat, Israe

    Status and perspectives of short baseline studies

    Full text link
    The study of flavor changing neutrinos is a very active field of research. I will discuss the status of ongoing and near term experiments investigating neutrino properties at short distances from the source. In the next few years, the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start looking for signatures of a non-zero value of the mixing angle θ13\theta_{13} with much improved sensitivities. The MiniBooNE experiment is investigating the LSND anomaly by looking at both the νμνe\nu_{\mu} \to \nu_{e} and νˉμνˉe\bar{\nu}_{\mu} \to \bar{\nu}_{e} appearance channels. Recent results on cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2009), Rome, Italy, 1-5 July 200

    Contrasting solar and reactor neutrinos with a non-zero value of theta13

    Full text link
    When solar neutrino and KamLAND data are analyzed separately one finds that, even though allowed regions of neutrino parameters overlap, the values of δm2\delta m^2 and the mixing angle θ12\theta_{12} at the χ2\chi^2 minima are different. We show that a non-zero, but small value of the angle θ13\theta_{13} can account for this behavior. From the joint analysis of solar neutrino and KamLAND data we find the best fit value of sin22θ13=0.01+0.090.01\sin^2 2 \theta_{13} = 0.01 ^{-0.01}_{+0.09}.Comment: 6 pages of LATEX, 5 figure

    Optimized Two-Baseline Beta-Beam Experiment

    Get PDF
    We propose a realistic Beta-Beam experiment with four source ions and two baselines for the best possible sensitivity to theta_{13}, CP violation and mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are detected in a 500 kton water Cerenkov detector at a distance L=650 km (first oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a 50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from the source. Since the decay ring requires a tilt angle of 34.5 degrees to send the beam to the magic baseline, the far end of the ring has a maximum depth of d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction of ions that decay along the straight sections of the racetrack geometry decay ring (called livetime) is 0.3. We alleviate this problem by proposing to trade reduction of the livetime of the decay ring with the increase in the boost factor of the ions, such that the number of events at the detector remains almost the same. This allows to substantially reduce the maximum depth of the decay ring at the far end, without significantly compromising the sensitivity of the experiment to the oscillation parameters. We take 8B and 8Li with gamma=390 and 656 respectively, as these are the largest possible boost factors possible with the envisaged upgrades of the SPS at CERN. This allows us to reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field. Increase of magnetic field to 15 T would further reduce d to 738 m only. We study the sensitivity reach of this two baseline two storage ring Beta-Beam experiment, and compare it with the corresponding reach of the other proposed facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in JHE

    Recoilless Resonant Absorption of Monochromatic Neutrino Beam for Measuring Delta m^2_{31} and theta_{13}

    Full text link
    We discuss, in the context of precision measurement of Delta m^2_{31} and theta_{13}, physics capabilities enabled by the recoilless resonant absorption of monochromatic antineutrino beam enhanced by the M\"ossbauer effect recently proposed by Raghavan. Under the assumption of small relative systematic error of a few tenth of percent level between measurement at different detector locations, we give analytical and numerical estimates of the sensitivities to Delta m^2_{31} and sin^2 2theta_{13}. The accuracies of determination of them are enormous; The fractional uncertainty in Delta m^2_{31} achievable by 10 point measurement is 0.6% (2.4%) for sin^2 2theta_{13} = 0.05, and the uncertainty of sin^2 2theta_{13} is 0.002 (0.008) both at 1 sigma CL with the optimistic (pessimistic) assumption of systematic error of 0.2% (1%). The former opens a new possibility of determining the neutrino mass hierarchy by comparing the measured value of Delta m^2_{31} with the one by accelerator experiments, while the latter will help resolving the theta_{23} octant degeneracy.Comment: 23 pages, 3 figures, version to appear in New Journal of Physic

    Time-Energy Uncertainty Relations for Neutrino Oscillation and M\"Ossbauer Neutrino Experiment

    Full text link
    Using the Mandelstam-Tamm method we derive time-energy uncertainty relations for neutrino oscillations. We demonstrate that the small energy uncertainty of antineutrinos in a recently considered experiment with recoilless resonant (M\"ossbauer) production and absorption of tritium antineutrinos is in conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. A M\"ossbauer neutrino experiment could provide a unique possibility to test the applicability of the time-energy uncertainty relation to neutrino oscillations and to reveal the true nature of neutrino oscillations

    Learning from tau appearance

    Full text link
    The study of numu->nutau oscillation and the explicit observation of the nutau through the identification of the final-state tau lepton ("direct appearance search") represent the most straightforward test of the oscillation phenomenon. It is, nonetheless, the most challenging from the experimental point of view. In this paper we discuss the current empirical evidence for direct appearance of tau neutrinos at the atmospheric scale and the perspectives for the next few years, up to the completion of the CNGS physics programme. We investigate the relevance of this specific oscillation channel to gain insight into neutrino physics within the standard three-family framework. Finally, we discuss the opportunities offered by precision studies of numu->nutau transitions in the occurrence of more exotic scenarios emerging from additional sterile neutrinos or non-standard interactions.Comment: 26 pages, 7 figures, to appear in NJ

    Topical Review on "Beta-beams"

    Full text link
    Neutrino physics is traversing an exciting period, after the important discovery that neutrinos are massive particles, that has implications from high-energy physics to cosmology. A new method for the production of intense and pure neutrino beams has been proposed recently: the ``beta-beam''. It exploits boosted radioactive ions decaying through beta-decay. This novel concept has been the starting point for a new possible future facility. Its main goal is to address the crucial issue of the existence of CP violation in the lepton sector. Here we review the status and the recent developments with beta-beams. We discuss the original, the medium and high-energy scenarios as well as mono-chromatic neutrino beams produced through ion electron-capture. The issue of the degeneracies is mentioned. An overview of low energy beta-beams is also presented. These beams can be used to perform experiments of interest for nuclear structure, for the study of fundamental interactions and for nuclear astrophysics.Comment: Topical Review for Journal of Physics G: Nuclear and Particle Physics, published version, minor corrections, references adde
    corecore