7 research outputs found
Workshop on Strategies for Calibration and Validation of Global Change Measurements
The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented
MODIS. Volume 1: MODIS level 1A software baseline requirements
This document describes the level 1A software requirements for the moderate resolution imaging spectroradiometer (MODIS) instrument. This includes internal and external requirements. Internal requirements include functional, operational, and data processing as well as performance, quality, safety, and security engineering requirements. External requirements include those imposed by data archive and distribution systems (DADS); scheduling, control, monitoring, and accounting (SCMA); product management (PM) system; MODIS log; and product generation system (PGS). Implementation constraints and requirements for adapting the software to the physical environment are also included
The 1987 Airborne Antarctic Ozone Experiment: the Nimbus-7 TOMS Data Atlas
Total ozone data taken by the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) played a central role in the successful outcome of the 1987 Airborne Antarctic Ozone Experiment. The near-real-time TOMS total ozone observations were suppled within hours of real time to the operations center in Punta Arenas, Chile, over a telecommunications network designed specifically for this purpose. The TOMS data preparation and method of transfer over the telecommunications links are reviewed. This atlas includes a complete set of the near-real-time TOMS orbital overpass data over regions around the Palmer Peninsula of Antarctica for the period of August 8 through September 29, 1987. Also provided are daily polar orthographic projections of TOMS total ozone measurements over the Southern Hemisphere from August through November 1987. In addition, a chronology of the salient points of the experiment, along with some latitudinal cross sections and time series at locations of interest of the TOMS total ozone observations are presented. The TOMS total ozone measurements are evaluated along the flight tracks of each of the ER-2 and DC-8 missions during the experiment. The ozone hole is shown here to develop in a monotonic progression throughout late August and September. The minimum total ozone amount was found on 5 October, when its all-time lowest value of 109 DU is recorded. The hole remains well defined, but fills gradually from mid-October through mid-November. The hole's dissolution is observed here to begin in mid-November, when it elongates and begins to rotate. By the end of November, the south pole is no longer located within the ozone hole
Using VIIRS to Provide Data Continuity with MODIS
Long-term continuity of the data series being initiated by the MODIS (MODerate Resolution Imaging Spectroradiometer) on NASA's Terra mission will be obtained using the VIIRS (Visible Infrared Imaging Radiometer Suite) flying on the converged National Polar-Orbiting Environmental Satellite System (NPOESS) and on the NPOESS Preparatory Project (NPP). The data series include critical parameters such as cloud and aerosol properties, vegetation index, land use and land cover, ocean chlorophyll and sea surface temperature. VIIRS is being designed and built by Raytheon for the Integrated Program Office (IPO), the DoD, NOAA and NASA consortium that is responsible for NPOESS. In addition to meeting the requirements for operational environmental monitoring, VIIRS will meet the needs of the global change research community through the use of state-of-the-art algorithms and calibration and characterization activities