465 research outputs found

    Bound States of the Klein-Gordon Equation for Woods-Saxon Potential With Position Dependent Mass

    Full text link
    The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.Comment: 13 page

    Quantum Mechanical Treatment of the Problem of Constraints in Nonextensive Formalism Revisited

    Get PDF
    The purity of Werner state in nonextensive formalism associated with two different constraints has been calculated in a previous paper by G. B. Bagci et al. [G. B. Bagci et al., Int. J. Mod. Phys. 20, 2085 (2006)]. Two different results have been obtained corresponding to ordinary probability and escort probability whereas the former has been shown to result in negative values thereby leading authors to deduce the advantage of escort probabilities over ordinary probabilities. However, this results have been only for a limited interval of q values which lie between 0 and 1. In this paper, we solve the same problem for all values of nonextensive index q by using a perturbative approach and show that the simultaneous use of both types of constraint is necessary in order to obtain the solution for whole spectrum of nonextensive index. In this sense, the existence of these different constraints in nonextensive formalism must not be seen as a deficiency in the formalism but rather must be welcomed as a means of providing solution for all values of parameter q.Comment: 7 page

    Scattering states of a particle, with position-dependent mass, in a double heterojunction

    Full text link
    In this work we obtain the exact analytical scattering solutions of a particle (electron or hole) in a semiconductor double heterojunction - potential well / barrier - where the effective mass of the particle varies with position inside the heterojunctions. It is observed that the spatial dependence of mass within the well / barrier introduces a nonlinear component in the plane wave solutions of the continuum states. Additionally, the transmission coefficient is found to increase with increasing energy, finally approaching unity, whereas the reflection coefficient follows the reverse trend and goes to zero.Comment: 7 pages, 6 figure

    Effective-mass Klein-Gordon Equation for non-PT/non-Hermitian Generalized Morse Potential

    Full text link
    The one-dimensional effective-mass Klein-Gordon equation for the real, and non-\textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.Comment: 14 page

    Effective-Mass Dirac Equation for Woods-Saxon Potential: Scattering, Bound States and Resonances

    Get PDF
    Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmission resonance and observed that the expressions for bound states and resonances are equal for the energy values E=±mE=\pm m.Comment: 20 pages, 6 figure

    Scattering of Woods-Saxon Potential in Schrodinger Equation

    Full text link
    The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heun's function. These results are also studied for the constant mass case in detail.Comment: 14 page

    Exact Spin and Pseudo-Spin Symmetric Solutions of the Dirac-Kratzer Problem with a tensor potential via Laplace Transform Approach

    Full text link
    Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectra is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agrement with the ones given in literature. The numerical results are also given in a table for different parameter values.Comment: 8 page

    New exact solution of the one dimensional Dirac Equation for the Woods-Saxon potential within the effective mass case

    Full text link
    We study the one-dimensional Dirac equation in the framework of a position dependent mass under the action of a Woods-Saxon external potential. We find that constraining appropriately the mass function it is possible to obtain a solution of the problem in terms of the hypergeometric function. The mass function for which this turns out to be possible is continuous. In particular we study the scattering problem and derive exact expressions for the reflection and transmission coefficients which are compared to those of the constant mass case. For the very same mass function the bound state problem is also solved, providing a transcendental equation for the energy eigenvalues which is solved numerically.Comment: Version to match the one which has been accepted for publication by J. Phys. A: Math. Theor. Added one figure, several comments and few references. (24 pages and 7 figures

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Efficacy of Spinetoram for the Control of Bean Weevil, Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae) on Different Surfaces

    Get PDF
    Simple Summary Contact toxicity of spinetoram on three different surfaces, concrete, ceramic floor tile and laminate flooring, against Acanthocelides obtectus (Say.) was evaluated in laboratory bioassays. Our results provide data on the insecticidal effect of spinetoram for the control of A. obtectus on various surfaces; however, its efficacy varies according to the surface type, exposure time and concentration. In conclusion, our laboratory tests indicated that spinetoram at 0.025 and 0.05 mg active ingredient (AI)/cm(2) achieved satisfactory control at relatively short exposures by contact action of A. obtectus adults on three surfaces, commonly encountered in legume storage facilities and warehouses. In this study, the contact toxicity of spinetoram on three different surfaces, concrete, ceramic floor tile and laminate flooring, against Acanthocelides obtectus (Say.) (Coleoptera: Chrysomelidae) was evaluated in laboratory bioassays. Different concentrations were evaluated ranging from 0.0025 to 0.05 mg AI/cm(2), against adults of A. obtectus. Adult mortality was measured after 1-, 3-, 5- and 7-day exposure. After 1-day exposure, the mortality was low on all surfaces, ranging from 0 to 27.2%. After 5- and 7-day exposure, spinetoram at concentrations of 0.01 mg/cm(2) and above achieved 100% or close mortality on concrete and laminate flooring surface, whereas low concentrations (0.0025, 0.005 and 0.0075 mg AI/cm(2)) resulted in significantly lower mortality levels, ranging from 1.6 to 30.8%, than high concentrations. In the case of ceramic floor tile surface, spinetoram treatments at all tested concentrations did not result in 100% mortality. Significant differences were recorded among the surfaces, depending on concentrations and exposure intervals. After 3-, 5- and 7-day exposure, mortality levels on ceramic floor tile surface were generally higher at low concentrations than those on the concrete and laminate flooring surfaces, whereas those on concrete and laminate flooring surfaces were significantly higher at high concentrations than ceramic floor tile surface. These results indicate that spinetoram at 0.025 and 0.05 mg AI/cm(2) achieve satisfactory control at relatively short exposures on common types of surfaces and thus can be used as an effective insecticide against A. obtectus
    corecore