16,535 research outputs found

    Dynamical density functional theory: phase separation in a cavity and the influence of symmetry

    Get PDF
    Consider a fluid composed of two species of particles, where the interparticle pair potentials u11=u22u12u_{11} = u_{22} \neq u_{12}. On confining an equal number of particles from each species in a cavity, one finds that the average one body density profiles of each species are constrained to be exactly the same due to the symmetry, when both external cavity potentials are the same. For a binary fluid of Brownian particles interacting via repulsive Gaussian pair potentials that exhibits phase separation, we study the dynamics of the fluid one body density profiles on breaking the symmetry of the external potentials, using the dynamical density functional theory of Marconi and Tarazona [{\it J. Chem. Phys.}, {\bf 110}, 8032 (1999)]. On breaking the symmetry we see that the fluid one body density profiles can then show the phase separation that is present.Comment: 7 pages, 4 figures. Accepted for the proceedings of the Liquid Matter conference 2005, to be publication in J. Phys.: Condens. Matte

    Legal medical consideration of alzheimer’s disease patients’ dysgraphia and cognitive dysfunction: a 6 month follow up

    Get PDF
    Background: The purpose of this study was to investigate the ability of Alzheimer’s disease (AD) patients to express intentions and desires, and their decision-making capacity. This study examines the findings from a 6-month follow-up of our previous results in which 30 patients participated. Materials and methods: The patient’s cognition was examined by conducting the tests of 14 questions and letter-writing ability over a period of 19 days, and it was repeated after 6 months. The difference between these two cognitive measures (PQ1 before–PQ2 before), tested previously and later the writing test, was designated DΔ before. The test was repeated after 6 months, and PQ1 after–PQ2 after was designated DΔ after. Results: Several markedly strong relationships between dysgraphia and other measures of cognitive performance in AD patients were observed. The most aged patients (over 86 years), despite less frequency, maintain the cognitive capacity manifested in the graphic expressions. A document, written by an AD patient presents an honest expression of the patient’s intention if that document is legible, clear, and comprehensive. Conclusion: The identification of impairment/deficits in writing and cognition during different phases of AD may facilitate the understanding of disease progression and identify the occasions during which the patient may be considered sufficiently lucid to make decisions. Keywords: cognition, intentions, unfit to plead, consen

    Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft core fluid

    Get PDF
    Using density functional theory we calculate the density profiles of a binary solvent adsorbed around a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase separation and for thermodynamic states near to coexistence the big particles can be surrounded by a thick adsorbed `wetting' film of the coexisting solvent phase. On reducing the separation between the two big particles we find there can be a `bridging' transition as the wetting films join to form a fluid bridge. The potential between the two big particles becomes long ranged and strongly attractive in the bridged configuration. Within our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a non-zero bridge function in the correlations between the solute particles when our model fluid is described within a full mixture theory based upon the Ornstein-Zernike equations.Comment: 28 pages, 8 figure

    Change in Working Length at Different Stages of Instrumentation as a Function of Canal Curvature

    Get PDF
    The aim of this study was to determine the change in working length (∆WL) before and after coronal flaring and after complete rotary instrumentation as a function of canal curvature. One mesiobuccal or mesiolingual canal from each of 43 extracted molars had coronal standardization and access performed. Once the access was completed, canal preparation was accomplished using Gates Glidden drills for coronal flaring and EndoSequence files for rotary instrumentation. WLs were obtained at 3 time points: pre-instrumentation (unflared), mid-instrumentation (flared) and post-instrumentation (concluded). Measurements were made via direct visualization (DV) and the CanalPro apex locator (EM) in triplicate by a single operator with blinding within the time points. Root curvature was measured using Schneider’s technique. The change in working length was assessed using repeated-measures ANCOVA. The direct visualization measurements were statistically larger than the electronic measurements (paired t-test difference = 0.20 mm, SE = 0.037, P \u3c .0001), although a difference this large may not be clinically important. Overall, a greater change in working length was observed in straight canals than in curved canals, and this trend was more pronounced when measured electronically than via direct visualization, especially in the unflared-concluded time points compared with unflared-flared time points. A greater change in working length was also observed in longer canals than in shorter canals.https://scholarscompass.vcu.edu/gradposters/1032/thumbnail.jp

    Solidification in soft-core fluids: disordered solids from fast solidification fronts

    Get PDF
    Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.Comment: 18 pages, 14 fig

    Constraints on DD Dimensional Warped Spaces

    Full text link
    In order to investigate the phenomenological implications of allowing gauge fields to propagate in warped spaces of more than five dimensions, we consider a toy model of a space warped by the presence of a anisotropic bulk cosmological constant. After solving the Einstein equation, three classes of solutions are found, those in which the additional (D>5D>5) dimensions are growing, shrinking or remaining constant. It is found that gauge fields propagating in these spaces have a significantly different Kaluza Klein (KK) mass spectrum and couplings from that of the Randall and Sundrum model. This leads to a greatly reduced lower bound on the KK scale, arising from electroweak constraints, for spaces growing towards the IR brane.Comment: 6 pages, 5 figures PASCOS2010 International Symposium proceedin

    Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel

    Get PDF
    We present a density-functional study of a binary phase-separating mixture of soft core particles immersed in a random matrix of quenched soft core particles of larger size. This is a model for a binary polymer mixture immersed in a crosslinked rigid polymer network. Using the replica `trick' for quenched-annealed mixtures we derive an explicit density functional theory that treats the quenched species on the level of its one-body density distribution. The relation to a set of effective external potentials acting on the annealed components is discussed. We relate matrix-induced condensation in bulk to the behaviour of the mixture around a single large particle. The interfacial properties of the binary mixture at a surface of the quenched matrix display a rich interplay between capillary condensation inside the bulk matrix and wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.
    corecore