16,535 research outputs found
Dynamical density functional theory: phase separation in a cavity and the influence of symmetry
Consider a fluid composed of two species of particles, where the
interparticle pair potentials . On confining an
equal number of particles from each species in a cavity, one finds that the
average one body density profiles of each species are constrained to be exactly
the same due to the symmetry, when both external cavity potentials are the
same. For a binary fluid of Brownian particles interacting via repulsive
Gaussian pair potentials that exhibits phase separation, we study the dynamics
of the fluid one body density profiles on breaking the symmetry of the external
potentials, using the dynamical density functional theory of Marconi and
Tarazona [{\it J. Chem. Phys.}, {\bf 110}, 8032 (1999)]. On breaking the
symmetry we see that the fluid one body density profiles can then show the
phase separation that is present.Comment: 7 pages, 4 figures. Accepted for the proceedings of the Liquid Matter
conference 2005, to be publication in J. Phys.: Condens. Matte
Legal medical consideration of alzheimer’s disease patients’ dysgraphia and cognitive dysfunction: a 6 month follow up
Background: The purpose of this study was to investigate the ability of Alzheimer’s disease
(AD) patients to express intentions and desires, and their decision-making capacity. This study
examines the findings from a 6-month follow-up of our previous results in which 30 patients
participated.
Materials and methods: The patient’s cognition was examined by conducting the tests of 14
questions and letter-writing ability over a period of 19 days, and it was repeated after 6 months.
The difference between these two cognitive measures (PQ1 before–PQ2 before), tested previously
and later the writing test, was designated DΔ before. The test was repeated after 6 months,
and PQ1 after–PQ2 after was designated DΔ after.
Results: Several markedly strong relationships between dysgraphia and other measures of
cognitive performance in AD patients were observed. The most aged patients (over 86 years),
despite less frequency, maintain the cognitive capacity manifested in the graphic expressions.
A document, written by an AD patient presents an honest expression of the patient’s intention
if that document is legible, clear, and comprehensive.
Conclusion: The identification of impairment/deficits in writing and cognition during different
phases of AD may facilitate the understanding of disease progression and identify the occasions
during which the patient may be considered sufficiently lucid to make decisions.
Keywords: cognition, intentions, unfit to plead, consen
Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft core fluid
Using density functional theory we calculate the density profiles of a binary
solvent adsorbed around a pair of big solute particles. All species interact
via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase
separation and for thermodynamic states near to coexistence the big particles
can be surrounded by a thick adsorbed `wetting' film of the coexisting solvent
phase. On reducing the separation between the two big particles we find there
can be a `bridging' transition as the wetting films join to form a fluid
bridge. The potential between the two big particles becomes long ranged and
strongly attractive in the bridged configuration. Within our mean-field
treatment the bridging transition results in a discontinuity in the solvent
mediated force. We demonstrate that accounting for the phenomenon of bridging
requires the presence of a non-zero bridge function in the correlations between
the solute particles when our model fluid is described within a full mixture
theory based upon the Ornstein-Zernike equations.Comment: 28 pages, 8 figure
Change in Working Length at Different Stages of Instrumentation as a Function of Canal Curvature
The aim of this study was to determine the change in working length (∆WL) before and after coronal flaring and after complete rotary instrumentation as a function of canal curvature. One mesiobuccal or mesiolingual canal from each of 43 extracted molars had coronal standardization and access performed. Once the access was completed, canal preparation was accomplished using Gates Glidden drills for coronal flaring and EndoSequence files for rotary instrumentation. WLs were obtained at 3 time points: pre-instrumentation (unflared), mid-instrumentation (flared) and post-instrumentation (concluded). Measurements were made via direct visualization (DV) and the CanalPro apex locator (EM) in triplicate by a single operator with blinding within the time points. Root curvature was measured using Schneider’s technique. The change in working length was assessed using repeated-measures ANCOVA. The direct visualization measurements were statistically larger than the electronic measurements (paired t-test difference = 0.20 mm, SE = 0.037, P \u3c .0001), although a difference this large may not be clinically important. Overall, a greater change in working length was observed in straight canals than in curved canals, and this trend was more pronounced when measured electronically than via direct visualization, especially in the unflared-concluded time points compared with unflared-flared time points. A greater change in working length was also observed in longer canals than in shorter canals.https://scholarscompass.vcu.edu/gradposters/1032/thumbnail.jp
Solidification in soft-core fluids: disordered solids from fast solidification fronts
Using dynamical density functional theory we calculate the speed of
solidification fronts advancing into a quenched two-dimensional model fluid of
soft-core particles. We find that solidification fronts can advance via two
different mechanisms, depending on the depth of the quench. For shallow
quenches, the front propagation is via a nonlinear mechanism. For deep
quenches, front propagation is governed by a linear mechanism and in this
regime we are able to determine the front speed via a marginal stability
analysis. We find that the density modulations generated behind the advancing
front have a characteristic scale that differs from the wavelength of the
density modulation in thermodynamic equilibrium, i.e., the spacing between the
crystal planes in an equilibrium crystal. This leads to the subsequent
development of disorder in the solids that are formed. For the one-component
fluid, the particles are able to rearrange to form a well-ordered crystal, with
few defects. However, solidification fronts in a binary mixture exhibiting
crystalline phases with square and hexagonal ordering generate solids that are
unable to rearrange after the passage of the solidification front and a
significant amount of disorder remains in the system.Comment: 18 pages, 14 fig
Constraints on Dimensional Warped Spaces
In order to investigate the phenomenological implications of allowing gauge
fields to propagate in warped spaces of more than five dimensions, we consider
a toy model of a space warped by the presence of a anisotropic bulk
cosmological constant. After solving the Einstein equation, three classes of
solutions are found, those in which the additional () dimensions are
growing, shrinking or remaining constant. It is found that gauge fields
propagating in these spaces have a significantly different Kaluza Klein (KK)
mass spectrum and couplings from that of the Randall and Sundrum model. This
leads to a greatly reduced lower bound on the KK scale, arising from
electroweak constraints, for spaces growing towards the IR brane.Comment: 6 pages, 5 figures PASCOS2010 International Symposium proceedin
Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel
We present a density-functional study of a binary phase-separating mixture of
soft core particles immersed in a random matrix of quenched soft core particles
of larger size. This is a model for a binary polymer mixture immersed in a
crosslinked rigid polymer network. Using the replica `trick' for
quenched-annealed mixtures we derive an explicit density functional theory that
treats the quenched species on the level of its one-body density distribution.
The relation to a set of effective external potentials acting on the annealed
components is discussed. We relate matrix-induced condensation in bulk to the
behaviour of the mixture around a single large particle. The interfacial
properties of the binary mixture at a surface of the quenched matrix display a
rich interplay between capillary condensation inside the bulk matrix and
wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.
- …
