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Using density functional theory we calculate the density profiles of a binary solvent adsorbed around
a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent
exhibits fluid-fluid phase separation, and for thermodynamic states near to coexistence the big
particles can be surrounded by a thick adsorbed “wetting” film of the coexisting solvent phase. On
reducing the separation between the two big particles we find there can be a “bridging” transition as
the wetting films join to form a fluid bridge. The effectivessolvent mediatedd potential between the
two big particles becomes long ranged and strongly attractive in the bridged configuration. Within
our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated
force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a
nonzero bridge function in the correlations between the solute particles when our model fluid is
described within a full mixture theory based upon the Ornstein–Zernike equations.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1855878g

I. INTRODUCTION

Big solute particlesse.g., colloidsd immersed in a solvent
of smaller particles interact with each other by an effective
potential which is the sum of their direct interaction and a
solvent mediatedsSMd potential. Even when the direct inter-
action consists solely of two-body terms, the SM potential
usually contains higher-body contributions of all orders
which are determined formally by integrating out the solvent
degrees of freedom. This conceptual framework yields, in
principle, a much simpler effective Hamiltonian which in-
volves only the coordinates of the big particles.1 In certain
systems the two-body term in the SM potential may domi-
nate completely the corresponding direct interaction. A well-
known example is a suspension of big hard-sphere colloids
in a solvent of small hard spheres. There the SM potential
between the colloids is termed the depletion interaction, and
this is the only contribution to the effective potential for
separations greater than the big hard-sphere diameter.2 In the
case of asnonhardd solvent which is at a state point near to
fluid-fluid phase separation, big solute particles can be sur-
rounded by a thick adsorbed “wetting” film of the coexisting
solvent phase.3 If two such big particles become sufficiently
close, there can be a “bridging transition” as the wetting
films surrounding the two big particles join to form a fluid
bridge of the wetting phase—see, for example, Ref. 4 and
references therein. In wet granular media these bridgingsor
capillaryd forces lead to strong and very short-ranged inter-
actions. Tip-substrate interactions in atomic force micros-
copy can be long ranged due to the formation of capillary

bridges.5 Long-ranged attractive interactions are also sur-
mised for hydrophobic molecules in water at ambient
conditions.6 Bridging is also a purported mechanism for driv-
ing colloidal flocculation.7

In previous work,8,9 the wetting of a binary solvent
around a single big particle and the influence of these thick
adsorbed films on the effective SM potential between two
big particles was investigated for a particular model fluid,
namely, the generalization to mixtures of the Gaussian core
model sGCMd.1,8–18 A Gaussian potential provides a good
approximation for the effective potential between the centers
of mass of polymers in solution.1,19,20 The approach to cal-
culating the SM potentials was based upon the theory devel-
oped by Rothet al.2—henceforth referred to as the “insertion
method.” The insertion method works within the framework
of density functional theorysDFTd sRef. 21d and uses as
input the density profiles calculated around asinglebig par-
ticle in order to calculate the SM potential between apair of
big particles.2,8,9 Although the insertion method is formally
exact, in practice, one must employ an approximation for the
free energy functional of the mixture of big and small
particles.2 For state points near to coexistence we found thick
adsorbed films around the big particles resulting in long
ranged, strongly attractive SM potentials whose range was
determined by the thickness of the wetting film. However,
using the insertion method, we were unable to detect any
direct sign of bridging in the SM potential.8,9

The present work can be viewed as going a significant
step further than Refs. 8 and 9. Here we investigate the same
system: two large solute Gaussian particles, immersed in a
binary GCM solvent near to phase separation. However,
whereas the previous work used the elegant insertionadElectronic mail: Andrew.Archer@bristol.ac.uk
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method, the present work can be viewed as the “brute-force”
approach to the problem. Using an accurate DFT for the
binary GCM solvent of small particles1,8,9,16,17we calculate
explicitly the solvent density profiles around a fixed pair of
the big GCM particles, treating the latter as external poten-
tials, and determine the resulting grand potential. By repeat-
ing this calculation for a range of values of the separation
between the centers of the two big particles we obtain the
SM potential. We find, within the presentsmean-fieldd DFT
approach, that when thick adsorbed films are present there
can be a bridging transition as the separation between the
two big particles is decreased, i.e., the formation of a bridg-
ing configuration gives rise to a discontinuity in the deriva-
tive of the SM potential. Bridging has been investigated pre-
viously within scoarse-grainedd local DFT sin contrast to our
nonlocal treatmentd in the recent study of Starket al.22 for
big hard spherical colloids immersed in an isotropic liquid
crystal host close to the isotropic-nematic phase boundary.
Similarly, Andrienkoet al.23 calculated bridging density pro-
files of a solvent adsorbed between a big colloid and a planar
wall using a local DFT.

We also investigate the SM potential between two big
GCM particles in a region of the solvent phase diagram near
the binodal but lying outside the single particle thin-thick
adsorbed film transition line,9 where a single big particle
does not have a thick adsorbed wetting film of the coexisting
solvent phase around it. Adsorption still influences strongly
the SM potential. We find an analog of capillary condensa-
tion; as the two big particles become sufficiently close, the
composite object is large enough to induce condensation of
the coexisting solvent phase around the pair of big particles.
This effect is somewhat different from that which can occur
between two big hard-core particles in a solvent near to co-
existence. When a pair of such particles are sufficiently
close, a bridge of the coexisting phase can condense in the
gap between the two big particles, without there being thick
wetting films adsorbed on each of the big particles.4 In the
present soft-core system the strong adsorption is not confined
to the space between the big particles, rather it extends
through the whole region in which the two big particles are
situated. This local condensation also results in a jump in the
SM force between the two big particles with the SM poten-
tial becoming strongly attractive for small separations.

In the final part of the present work we relate our results
for the SM potential to an approach for calculating the SM
potential based upon the mixture Ornstein–ZernikesOZd
equations.24–26 By solving the OZ equations together with a
closure relation one can calculate the various fluid correla-
tion functions. It is well known that if one makes a diagram-
matic expansion for the fluid correlation functions the hyper-
netted chainsHNCd closure approximation neglects a certain
class ofsbridged diagrams which, taken together, is termed
the bridge function.24 We show that in order to account for
the phenomenon of bridging of solvent between big particles
within a OZ approach to the fluid structure, one must incor-
porate an accurate theory for the bridge diagrams.

The paper is laid out as follows. In Sec. II we describe
briefly our model fluid, the GCM, and the DFT used to cal-
culate the solvent density profiles and the SM potential be-

tween two big solute GCM particles. Section III presents
results for the density profiles and SM potentials in the re-
gime where there are thick adsorbed films around a single
big particle, resulting in a bridging transition when two big
particles are sufficiently close together. In Sec. IV we present
a simple analytic “capillarity” approximation which de-
scribes qualitatively the onset of the bridging transitions that
we find. Section V describes the effect of the formation of a
thick adsorbed film around a pair of big particles, in the
portion of the phase diagram where there is no thick film
around a single big particle and Sec. VI describes our dem-
onstration that bridging between big particles is related to the
bridge function. Finally, in Sec. VII, we discuss our results
and draw some conclusions.

II. MODEL FLUID AND SM POTENTIALS

We determine the SM potential between two bigsBd
Gaussian particles immersed in a binary solvent of smaller
Gaussian particles. The GCM, in which the particles of spe-
cies i and j interact via purely repulsive Gaussian potentials

vi jsrd = ei j exps− r2/Rij
2d, s1d

is a simple model for polymers in solution1,12,13,16,17,20sin
particular, Ref. 1 provides a good general introduction to the
GCMd. For the binary GCM solvent we choose pair potential
parameters corresponding to a binary mixture of polymers of
length ratio 2:1, as were used in previous work on this model
fluid.8,9,16,17The values areR22/R11=0.665,R12/R11=0.849,
be11=be22=2.0 sb=1/kBTd, and e12/e11=0.944. R11 is the
basic length scale in the system. For this choice of param-
eters the binary mixture exhibits fluid-fluid phase separation.
The phase diagram of this binary solvent is plotted in the
total densityr0=r1

0+r2
0 versus concentrationx=r2

0/r0 plane
in Fig. 1 srn

0 are the bulk densities of the small particles of
speciesn=1, 2d—see also Ref. 16.

The SM potential between two big particles, labeledA
andB, with centers atr A andr B, separated by a distanceh, is
given by the difference in the grand potential,

WABshd = Vsur A − r Bu = hd − Vsur A − r Bu = `d. s2d

This result can be reexpressedstrivially d in terms of excess
grand potentials,vex

i ;V−Vb, wherei =A, B, andVb is the
grand potential of the bulk solvent in the situation where
there are no big particles present. Then,

WABshd = vex
ABsur A − r Bu = hd − vex

A − vex
B . s3d

Note that vex
i , the excess grand potential for inserting a

single big particle of speciesi, is equal tomex
i , the excess

chemical potential of big speciesi in the limit of the bulk
density of this speciesri

0→0.2,8,9The effective pair potential
between two identical big particles is then the sum of the
bare interactionvBBsrd and the SM potential,

vBB
ef fshd = vBBshd + WBBshd. s4d

Recall also that

084513-2 Archer et al. J. Chem. Phys. 122, 084513 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

158.125.80.61 On: Fri, 10 Oct 2014 13:39:09



vBB
ef fshd = − kBT ln gBBshd, s5d

wheregBB is the big-big radial distribution function in the
limit of the big particle bulk densityrB

0 →0. In the present
work we use DFT to obtain the quantitiesvex

ABsur A−r Bu=hd
andvex

i .
In DFT one calculates the solvent one-body density pro-

files, hrnsr dj, for a given set of external potentials,hVnsr dj,
by minimizing the grand potential functional,21

VVfhrnjg = Fidfhrnjg + Fexfhrnjg

− o
n
E drrnsr dfmn − Vnsr dg, s6d

wheremn are the chemical potentials for the two species,n
=1, 2, of solvent particles. The ideal gas part of the intrinsic
Helmholtz free energy functional is

Fidfhrnjg = kBTo
n
E drrnsr dflnsLn

3rnsr dd − 1g, s7d

whereLn is the thermal de Broglie wavelength of speciesn,
and Fexfhrnjg is the excess part of the intrinsic Helmholtz
free energy functional. Minimizing Eq.s6d together with Eq.
s7d one obtains the Euler–Lagrange equation

0 = kBT ln Ln
3rnsr d − kBTcn

s1dsr d − mn + Vnsr d, s8d

where

cn
s1dsr d = − b

dFexfhrnjg
drnsr d

s9d

is the one-body direct correlation function, which is a func-
tional of hrnj. In an exact treatment the density profileshrnj
satisfying Eq.s8d would yield the exact grand potentialV as
the minimum ofVV.21 At this point we also recall that the
two-body direct correlation functions are given by the sec-
ond functional derivative21

cn,j
s2dsr ,r 8d = − b

d2Fexfhrnjg
drnsr ddrjsr 8d

. s10d

For the GCM the following approximate excess Helm-
holtz free energy functional turns out, despite its simplicity,
to be remarkably accurate at high densities
r0R11

3 *5,1,9,12,13,16,27

Fex
RPAfhrijg =

1

2o
n,j
E drE dr 8rnsr drjsr 8dvn,jsur − r 8ud,

s11d

wherevn,jsrd is the pair potential between the small solvent
particles of speciesn andj, given by Eq.s1d. The functional,
Eq. s11d, is that which generates the random-phase approxi-
mation sRPAd closure,cn,j

s2d,RPAsr ,r 8d=−bvn,jsur −r 8ud, for the
pair direct correlation functions.1,12,13,16The higher the den-
sity, the more accurate is the RPA for this soft-core model.1

In the present work we choose the external potential to
correspond to two fixed big Gaussian particles of the same
size, separated by a distanceh,

Vnsr d = eBn exps− sr + h/2d2/RBn
2 d

+ eBn exps− sr − h/2d2/RBn
2 d, s12d

with n=1,2 and whereh is a vector along thez-axis, with
uhu=h, i.e., the centers of the big particles are atz= ±h/2.
Throughout the present study we choose the external poten-
tial parameters to bebeB1=1.0,beB2=0.8,RB1/R11=5.0, and
RB2/R11=4.972, the same values as those used for the big-
small particle pair potentials in much of the work in Refs. 8
and 9. With this external potential the solvent density profiles
have cylindrical symmetry, i.e., the density profiles are func-
tionsrnsz,rd, where thez-axis runs through the centers of the
two big particles andr is the radial distance from thez-axis.
If the external potential on the solvent were exerted by hard
particles, special care would be required to ensure that the
hard boundary is compatible with the grid of the numerical
calculations in order to avoid numerical artifacts in the con-
tact density.28 One would have to employ either matching
coordinate systems, such as the bispherical one used, e.g., in
Refs. 22 and 29, or even more sophisticated finite-element
methods with adaptive mesh size.23 One of the appealing
features of thesoft-coreGCM used in the present investiga-
tion is that we can avoid this problem and perform our cal-
culations on a uniform grid in cylindrical polar coordinates.

In Fig. 2 we display a typical density profile for a one-
component solvent of particles of species 1, with the external
potential given by Eq.s12d with h/R11=12. Having calcu-
lated the solvent density profiles for a given separationh of

FIG. 1. The bulk phase diagram for a binary mixture of GCM particles with
e12/e11=0.944 andR22/R11=0.665, equivalent to a mixture of two polymers
with length ratio 2:1ssee also Ref. 16d. r0 is the total density andx is the
concentration of the smaller species 2. The solid line whose ends are de-
noted by filled circles is the thin-thick adsorbed film transition of the binary
fluid adsorbed around a single big GCM particle with pair potential param-
etersbeB1=1.0,beB2=0.8,RB1/R11=5.0, andRB2/R11=4.972—see Ref. 9. It
meets the binodal at the wetting pointsupper circled with x=0.975 and
r0R11

3 =10.1 fnote these values differ slightly from the result quoted in Ref.
9—see footnotesRef. 30dg and terminates at a critical pointslower circled
with x=0.94 andr0R11

3 =7.5. The solid line whose ends are denoted by filled
squares is the thin-thick adsorbed film transition of the binary fluid adsorbed
around a composite pair of the same big GCM particles at zero separation
h=0. This transition line meets the binodalsupper squared at x=0.995 and
r0R11

3 =14 and terminates at a critical pointslower squared with x=0.973 and
r0R11

3 =8.5.

084513-3 Bridging in a binary solvent J. Chem. Phys. 122, 084513 ~2005!
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big particles, we can insert these into Eq.s6d to calculate the
sexcessd grand potential and the SM potentialWBBshd from
Eq. s3d. In Fig. 3 we display the SM potential between two
big GCM particles, calculated for a one-component solvent
with bulk densityr1

0R11
3 =6.9, i.e., the state point correspond-

ing to the profiles in Fig. 2. Figure 3 should be compared
with Fig. 2 of Ref. 9. The open circles are the results from
the present “brute-force” calculation. The solid line is the
result obtained using the insertion method, where one calcu-
lates only the solvent density profiles around an isolated,
single big particle and then uses the general result,2

bWBBshd = cB
s1dsh → `;rB

0 → 0d − cB
s1dsh;rB

0 → 0d, s13d

i.e., one calculates the difference in the excess chemical po-
tential between inserting the second big particle a distanceh
from the first and inserting it ath=`. As emphasized in the
Introduction, Eq.s13d is formally exact when we know the
exact free energy functional for a mixture of big and small
particles. Here we use the same RPA functionals11d ex-
tended to include a third speciesB, in order to find an ap-
proximatecB

s1d in Eq. s13d—see Ref. 9 for more details. The
results from the two different routes are almost indistinguish-

able for this point in the phase diagram, and generally for
other state points where no thick adsorbedswettingd films are
present around the big particles. The dashed line in Fig. 3
corresponds to the analytic approximation forWBBshd pre-
sented in Ref. 9,

bWBB
pureshd = − sp/2d3/2beB1r*RB1

3 exps− h2/2RB1
2 d, s14d

where r* =r1
0beB1/ s1+p3/2be11R11

3 r1
0d. The agreement be-

tween this approximation and the result of the full numerical
DFT calculations is remarkably good.

III. THE SM POTENTIAL WHEN THERE ARE THICK
ADSORBED FILMS: BRIDGING

We now consider the case when thick adsorbed films
develop around the big GCM particles. The circumstances in
which this can occur are discussed in Refs. 8 and 9. In gen-
eral there can be thick adsorbed films when the small solvent
particles are in a state near to phase separation. For the
present mixture, the big GCM particles favor species 1 of the
small solvent particles, and so thick adsorbed films of the
coexisting phase rich in species 1 can develop when the big
particles are immersed in the solvent at a state point lying on
the right hand side of the binodal, which is poor in species 1.
In Refs. 8 and 9 it was found that thick films develop via a
thin-thick transition out of bulk coexistence. The locus of
these transitions is shown as the solid line joining filled
circles in Fig. 1. Note that this transition line meets the bin-
odal at a wetting point whose density is somewhat higher
than that quoted in Ref. 9. This discrepancy is associated
with the existence of metastable minima in the free energy.30

In Figs. 4 and 5 we display density profiles calculated for a
pair of big particles immersed in a binary solvent of small

FIG. 2. The density profile of a one-component fluid of Gaussian particles,
with bulk densityr1

0R11
3 =6.9, around a pair of big Gaussian particles, whose

centers are located on thez axis a distanceh/R11=12 apart. The contours in
the z-r plane correspond tor1sz,rd=6.82, 6.84, 6.86, and 6.88.

FIG. 3. The SM potential between two big GCM particles in a one-
component solvent of small GCM particles, with bulk densityr1

0R11
3 =6.9.h

is the separation between the two big particles. The solid line is the DFT
insertion method results, the open circles are the results from the present
brute-force calculationsthe two are almost indistinguishabled and the dashed
line is the analytic result, Eq.s14d, obtained in Ref. 9.

FIG. 4. Density profilesrnsz,rd, n=1,2, for a solvent with total density
r0R11

3 =8.5 and concentrationx=0.948, a state near to phase separation lo-
cated inside the single particle thin-thick adsorbed film transition linessee
Fig. 1d. The centers of the big particles are a distanceh/R11=17 apart. Note
the presence of thick adsorbedswettingd films and the fluid bridge between
the particles. The contours, plotted in thez-r plane, correspond to
r1sz,rdR11

3 =1, 2, and 3 andr2sz,rdR11
3 =2–8 in increments of 2. The bridged

configuration is the stable one for this value ofh/R11.

084513-4 Archer et al. J. Chem. Phys. 122, 084513 ~2005!
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GCM particles with bulk densityr0R11
3 =8.5 and concentra-

tion x=0.948, a state point near to coexistence, located inside
the single particle thin-thick adsorbed film transition line
ssee Fig. 1d. sFigure 6 of Ref. 9 displays the solvent density
profiles around a single big particle for this state point.d In
Figs. 4 and 5 the centers of the big particles are a distance
h/R11=17 apart and there are thick adsorbed wetting films
around the big particles. However, in Fig. 4 there is a fluid
bridge between the two particles, whereas in Fig. 5 there is
no fluid bridge. This second set of profiles corresponds to a
metastable situation. For this state point the bridging transi-
tion occurs at a slightly larger separationht /R11=17.4; this is
where the bridged and unbridged configurations have equal
grand potential. In Fig. 6 we display the SM potential
WBBshd for this state point. There are two distinct branches,
corresponding to bridged and nonbridged configurations. For
h.ht the unbridged configuration is the stable one, whereas
for h,ht the bridged configuration becomes stable. Since the
two branches ofWBBshd have different slopes there is a dis-
continuity in the SM force, −dWBBshd /dh, at ht, the separa-
tion where the transition occurs. The extent of the metastable
portions is substantial; these extend well beyond the equilib-
rium transition. This type of metastability, with accompany-
ing hysteresis, was also found by Starket al.22 in their recent
study of the bridging of the nematic wetting film between
two colloids immersed in the isotropic phase of a liquid crys-
tal. We display in Fig. 7 the SM potential calculated in the
same way for a different point in the phase diagram, closer to
the solvent bulk critical point, at a total densityr0R11

3 =6.9
and concentrationx=0.88. This state point is also near to
bulk coexistencessee Fig. 1d. In both Figs. 6 and 7 we com-
pare the SM potential calculated using the present brute-
force approachssolid linesd with the results obtained using
the insertion methodsdashed lined as described in Ref. 9.
There is a significant difference between the results from the
two methods; the insertion method does not capture the ex-

istence of two distinct branches of the grand potential. Thus
it does not appear to include explicitly the effects of a bridg-
ing transition. The insertion method does predict very
strongly attractive SM potentials of a similar magnitude to
those from full DFT, but does not yield the correct shape or
range forWBBshd. In contrast we recall from Sec. II that in
the regime where there are no thick adsorbed films, the re-
sults from the insertion method and the brute-force method
are in good agreement.

FIG. 5. Density profiles for the same state point and separation,h/R11=17,
as Fig. 4, but now there is no fluid bridge between the big particles. This
configuration is metastable.

FIG. 6. The SM potential between two big GCM particles in a binary
solvent of smaller particles for the same state point as in Figs. 4 and 5, i.e.,
with total bulk densityr0R11

3 =8.5 and concentrationx=0.948.h is the sepa-
ration between the centers of the two big particles. The dashed line is the
result forWBBshd obtained using the insertion method, the dot-dashed line is
the sharp-kink resultssee text, Sec. IVd and the solid lines denote the results
from the brute-force calculation. In the brute-force calculation, one finds
that there are two branches forWBBshd ssee inset for more detaild, each with
a metastable portion. The branch with the smaller value ofWBBshd is stable.
This corresponds to the configuration with no bridge forh.ht, and to the
bridged configuration forh,ht. At ht /R11=17.4, where the two branches
cross, there is a discontinuity in the gradient ofWBBshd, i.e., there is a jump
in the SM force at this separation.

FIG. 7. The SM potential between two big GCM particles in a binary
solvent of smaller particles near to phase separation, with total bulk density
r0R11

3 =6.9 and concentrationx=0.88. h is the separation between the two
big particles. The dashed line is the result for the SM potential from the
insertion method, the solid lines are the results from the brute-force calcu-
lation and the dot-dashed line is the sharp-kink result. In the inset we display
a magnification ofWBBshd for largeh, showing the two branches crossing at
ht /R11=22.7 and giving rise to a jump in the SM force.
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IV. APPROXIMATION FOR THE SM POTENTIAL WHEN
BRIDGING OCCURS

In Ref. 9 we found that when there was a thick adsorbed
film around a single big particle, a good approximation for
the excess grand potential of a single big GCM particle im-
mersed in a binary GCM solvent of small particles is

vex
B . o

n=1

2

p3/2eBnRBn
3 rn

coex + 4pl2gsld, s15d

wherern
coex are the solvent bulk densities in the coexisting

phase, i.e., the phase that forms the adsorbed film.l is the
thickness of the adsorbed filmsl ,RBn, but we determine its
value by calculating explicitly via DFT, the density profiles
around a single big particled andgsld is the fluid-fluid surface
tension, which we approximate bygs`d, the surface tension
of the planar free interfacesthis is calculated using the ap-
proach presented in Ref. 16d. The first term in Eq.s15d is the
excess grand potential for inserting a single big particle into
the coexisting phase, obtained from the RPA bulk equation of
state,9 and the second term is the contribution from forming
a spherical fluid-fluid interface. Generalizing to two big par-
ticles we might therefore expect the following approximation
to be reliable:

vex
BBshd . 2o

n=1

2

p3/2eBnRBn
3 rn

coex + Asl,hdg8sl,hd, s16d

whereAsl ,hd is the surface area of the fluid-fluid interface
between the adsorbed film of the phase rich in species 1
which develops around the two big particles and the bulk
fluid rich in species 2.g8sl ,hd is the surface tension, which
we again approximate bygs`d, the planar fluid-fluid interfa-
cial tension. A similar sharp-kink or capillarity approach was
used in Ref. 4 to investigate bridging for very big hard-core
solute particles that induce thick adsorbedswettingd films,
but some new features arise for soft-core systems. At first
sight we might expect the firstssingle particle insertiond term
in Eq. s16d to be inaccurate ash→0, when the big particles
are strongly overlapping. However, this is not the case. When
h=0 the first term in Eq.s16d is accurate, since two big
particles lying on top of each other result in an external po-
tential that has the same form as that due to a single big
particle witheBn twice the value for one of the big particles
taken alone. In other words, if we take the first term in Eq.
s15d and make the substitutioneBn→2eBn, then we obtain the
same first term as in Eq.s16d. Given this observation the first
term in Eq.s16d should be accurate for both largeh and for
h=0. Thus, by continuity we expect it to be accurate for all
values ofh. The overall accuracy of Eq.s16d should depend
upon how accurately we determine the surface areaAsl ,hd
which appears in the second term.

Using Eqs.s16d, s15d, ands3d we can obtain an expres-
sion for the SM potential,

WBBshd . fAsl,hd − 8pl2ggs`d. s17d

We now present a simple model forAsl ,hd ssee also Ref. 32d,
which we expect to be reliable for values ofh near to where
the bridging transition occurs.

When h@2l, i.e., no fluid bridge is present, then
Asl ,hd=8pl2, and Eq.s17d givesWBBshd=0. When there is a
bridge, we approximate the end sections ofAsl ,hd by the
surfaces of two sections of spheres with radiusl, and the
bridge surface by the surface generated by rotating the arc of
a circle, of radiuss, about the axis passing through the cen-
ters of the end sphere sectionssthe z axisd. We denote the
width along thez axis of the bridge section by 2w and the
diameter of the bridge section at the midpoint between the
centers of the end sphere sections by 2d. The surface area of
the two end spherical sections is 4plsl +h/2−wd and the sur-
face area of the bridge section is 4psss+ddarcsinsw/sd
−4psw. Requiring continuity of the surfaces where the end
and bridge sections meet and also requiring continuity in the
gradients at the point where these sections join, we eliminate
s andd to obtain the following expression for the total sur-
face area:

Asl,hd =
2p w l h

sh/2 − wd2
Îl2 − sh/2 − wd2 arcsinSh/2 − w

l
D

−
4p w2 l

h/2 − w
+ 4p l sl + h/2 − wd. s18d

We choose the valuew=w0 which minimizes A, i.e.,
]A/]wuw=w0

=0 and use this prescription for calculating
Asl ,hd with Eq. s17d to calculate the SM potential between
two big GCM particles at state points near to coexistence.
For the case when the small particle solvent has a total den-
sity r0R11

3 =8.5 and concentrationx=0.948, corresponding to
the full DFT calculation of the SM potential in Fig. 6, we
find that bR11

2 gs`d=0.830, and that the film thickness
l /R11.7 ssee Fig. 6 in Ref. 9d. Using these values in Eqs.
s18d and s17d, we calculate the SM potential for this state
point. The result is the dot-dashed line displayed in Fig. 6
which is in good qualitative agreement with our results from
the full brute-force calculation of the SM potential, particu-
larly for values ofh near to where the bridging transition
occurs. We also used this simple approximation for the case
when the small particle solvent has a total densityr0R11

3

=6.9 and concentrationx=0.88, corresponding to the full
DFT calculation of the SM potential in Fig. 7. For this state
point bR11

2 gs`d=0.152 andl /R11=9.6 ssee Figs. 4 and 9 in
Ref. 9d, and the SM potential is shown as the dot-dashed line
in Fig. 7. Again, the results are in qualitative agreement with
those of the full calculation. In particular, this simple ap-
proach provides a surprisingly accurate means of estimating
the value ofh at which the bridging transition will occur. If
we assume that bridging will only occur whenWBBshd,0
the resulting values ofht underestimate the results of the full
calculation by only a few percent in both cases. Even for
small values ofh the results of the sharp-kink approximation
for WBBshd are of the correct magnitude. However, this ap-
proximation fails to reproduce the correct shape ofWBBshd
for small h.
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V. THICK ADSORBED FILMS ON COMPOSITE
PARTICLES

In the previous sections we considered only state points
near the binodal where we know that a single big GCM
particle is “wet” by a thick adsorbed film of the coexisting
phase rich in species 1, i.e., state points inside or below the
single particle thin-thick adsorbed film transition line. How-
ever, there can also be pronounced effects on the SM poten-
tial due to the presence of thick adsorbed films for state
points outside the single particle thin-thick adsorbed film
transition linessee Fig. 1d, where a single big particle im-
mersed in the solvent does not develop a thick adsorbed film.
When two big particles are sufficiently close together the
resulting composite object can be sufficiently large that a
thick film is adsorbed. This effect is somewhat analogous to
the case for big hard-core solute particles, where for certain
state points for which no thick adsorbed films are present,
capillary condensation of the coexisting phase can occur in
the space between the two big particles, provided these come
sufficiently close together.4,22 We cannot strictly describe the
phenomenon we observe as capillary condensation because
the big particles that we consider in the present work have
soft cores. Nevertheless, the present phenomenon has a simi-
lar effect on the SM potential, i.e., there is a jump in the SM
force on reducing the separationh. As mentioned above, this
phenomenon occurs outsidesbut close tod the single particle
thin-thick adsorbed film transition line. However, its occur-
rence is restricted to a particular region of the phase diagram.
If one considers two big particles with full overlapsh=0d
one can calculate the thin-thick adsorbed film transition line
for this composite object. This line is higher in total density
than the corresponding single particle transition linessee Fig.
1d and serves as an upper bound for the regime where cap-
illary condensation occurs; the latter is restricted to the re-
gion between the two transition lines.

The solvent density profiles around two big particles
with h sufficiently small that this condensation has occurred
are very similar in form to the profiles in Fig. 4, i.e., the
condensation does not just occur in the space between the
two big particles, as would be the case with a pair of hard-
core big particles. Rather, due to the soft-core nature of the
GCM, the adsorbed film spreads around the whole region in
which the two big particles are situated.

In Fig. 8 we display the SM potential between two big
GCM particles in a binary solvent of smaller particles with
total bulk densityr0R11

3 =11 and concentrationx=0.983. This
state point is located at bulk coexistence above the single
particle thin-thick adsorbed film transition line but inside the
transition line for the composite particle—see Fig. 1. For
large values ofh the SM potential calculated via the brute-
force approach is in good agreement with the results from
the insertion method. At this state point the insertion method
does not include any effects of thick adsorbed films since the
inputs into this theory are the density profiles around a single
big particle; for this state point a single big particle has no
thick adsorbed film. However, ash is decreased the results of
the full DFT calculation show that there is a discontinuity in
the gradient ofWBBshd due to the formation of a thick ad-

sorbed film around the two particles. The change in the SM
potential is very pronounced; the potential becomes much
more strongly attractive—see Fig. 8. The insertion method
sdashed lined accounts extremely well for the largeh behav-
ior of the SM potential. It also describes accurately the meta-
stable portion ofWBBshd for h below the transition value.
However, it fails completely to describe the stable, strongly
attractive portion arising from the formation of the thick ad-
sorbed film around the two particles; it underestimates the
strength of the attraction by a factor of about 10. This is not
too surprising, given that this method inputs only the density
profiles around a single big particle and that these exhibit no
thick adsorbed films for this state point.

VI. BRIDGING AND THE BRIDGE FUNCTION

We recall that the SM potentialWBBsrd is related via
Eqs.s4d ands5d to the pair correlation function between sol-
ute particles,gBBsrd, in a bulk ternary mixture which consists
of a single, big solute speciesB and two solvent species,
considered in the dilute limit of solute,rB→0. Since integral
equations are a standard tool to determine bulk pair correla-
tion functions in the theory of classical liquids,24 it is natural
to analyze the SM potential within this framework. However,
we recall from the outset that while integral equation theories
have achieved remarkable precision in the description of
one-component bulk fluids, integral equation closure ap-
proximations are generally less reliable in multicomponent
mixtures, especially for situations where the size of one-
component becomes much larger than the others leading to

FIG. 8. The SM potential between two big GCM particles in a binary
solvent of smaller particles with total bulk densityr0R11

3 =11 and concentra-
tion x=0.983 sthis state point is at bulk coexistence, outside the single
particle thin-thick adsorbed film transition line, but inside the thin-thick
adsorbed film transition line for a composite pair of completely overlapping
big particles—see Fig. 1d. h is the separation between the centers of the two
big GCM particles. The dashed line is the result forWBBshd obtained using
the insertion method and the solid lines denote the results from the brute-
force method. For this state point a single big particle does not develop thick
adsorbed film, but when two big particles are sufficiently close together the
resulting composite object can develop a thick adsorbed film. The two
branches ofWBBshd correspond to configurations without adsorbed films
sstable at largehd and with filmssstable at smallhd. These cross ath/R11

=10.2, resulting in a discontinuity in the gradient ofWBBshd and a jump in
the SM force.
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the possibility of thick film adsorption or wetting phenomena
or, in the case of hard-sphere mixtures, to depletion phenom-
ena.

Before we analyzegBBsrd in the ternary mixture, it is
instructive to point out some features of the two-component
solvent mixture which provide a relationship between the
hypernetted chainsHNCd integral equations and the RPA
density functional used in the present work. Diagrammatic
analysis yields the following standard relationships between
the pair correlation functions in a homogeneoussbulkd
mixture:24

hijsrd − cij
s2dsrd = o

k=1,2
rk

0E dr 8hiksur − r 8udckj
s2dsr8d, s19d

ln gijsrd + bvi jsrd = hijsrd − cij
s2dsrd + bijsrd, s20d

wherehijsrd=gijsrd−1. The first equation is the OZ equation
for binary mixtures and the second provides the formally
exact closure to the OZ equation in terms of thesgenerally
unknownd bridge functionbijsrd. The bulk densities of the
two solvent species are denoted byrk

0sk=1,2d. It is a special
feature of the binary GCMsor related soft-core modelsd that
its pair correlation functions are very well described within
the HNC approximation1,12–18,27,33which amounts to setting
bijsrd=0. We denote the corresponding solution for the pair
direct correlation function bycij

s2d,HNCsrd. The relation to den-
sity functional theory follows by noting that the HNC equa-
tions, Eq.s20d with bijsrd=0, are identical to the test particle
equations obtained from a DFT with the excess free energy
functional34

Fex
HNCfhrijg = Aexshri

0jd + o
i=1,2

E drmi
HNCDrisr d

−
1

2b
E drE dr 8 o

i j =1,2
cij

s2d,HNCsur − r 8ud

3Drisr dDr jsr 8d, s21d

corresponding to a Taylor expansion to quadratic order in
Drisr d about the bulk densities. The test particle equations
follow by choosing as external potentials the interparticle
potentialv jisrd, minimizing the HNC grand potential func-
tional with respect tor jsrd and identifyinggjisrd;r jsrd /r j

0.
In Eq. s21d, Drisr d=risr d−ri

0 and Aexshri
0jd denotes the ex-

cess Helmholtz free energy of the bulk solvent. The HNC
chemical potential is given by

bmi
HNC = o

j=1,2
r j

0E dr s 1
2hjisrdfhjisrd − cji

s2d,HNCsrdg

− cji
s2d,HNCsrdd . s22d

Previous results for the GCM showed that the pair correla-
tion functions obtained from the HNC were similar to those
obtained from the RPA1,12,13,33and that the fluid-fluid bin-
odals from the RPA and the HNC approximation were close
to each other.33 If one neglects the weak density dependence
of cji

s2d,HNCsrd and setscji
s2d,HNCsrd.cji

s2d,RPAsrd=−bv jisrd then
one can show for the binary mixture,i =1, 2,

Fex
HNCfhrijg . Fex

RPAfhrijg, s23d

whereFex
RPA is the RPA functional defined in Eq.s11d.

We have seen in earlier sections that for a fixed big
Gaussian particle exerting an external potential on the sol-
vent close to coexistence, the RPA functional accounts for
the formation of a thick adsorbed film. It also accounts for
complete wetting at a planar wall.17 Owing to the weak den-
sity dependence ofcij

s2d,HNCsrd we also expect the HNC func-
tional to describe thick film formation and complete wetting.
fThis is in sharp contrast to simple fluids of the Lennard–
Jones type where the harshly repulsive core in the inter-
atomic potential induces a strong density dependence of the
direct correlation functioncs2dsrd and the HNC functional
s21d fails to account for complete wetting.34,35g

Explicit minimization of the HNC functional for a binary
mixture in the presence of an external potential due to a
single solute particle yields the HNC solute-solvent integral
equations. These can also be derived from the test particle
equations of the HNC functional for the ternary mixture of
binary solvent plus solute in the dilute limit of the solute,
rB→0. This functional is linear inrBsr d and is, at most,
quadratic in the other density profiles. It is given by

Fex,tern
HNC = Fex

HNC + mB
HNCE dr rBsr d

−
1

2b
E drE dr 8 o

i=1,2
ciB

s2d,HNCsur − r 8ud

3Drisr drBsr 8d. s24d

Here,mB
HNCshri

0jd is the HNC insertion free energyschemical
potentiald for inserting a single solute particle into the bulk
solvent with densitiesri

0 si =1,2d. Analogously to Eq.s22d,
mB

HNC is given by

bmB
HNC = o

i=1,2
ri

0E dr s 1
2hiBsrdfhiBsrd − ciB

s2d,HNCsrdg

− ciB
s2d,HNCsrdd , s25d

where the solute-solvent pair correlation functionhiBsrd and
the direct correlation functionciB

s2d,HNCsrd are determined by
solving the solvent-solvent and solute-solvent HNC equa-
tions. In the dilute limit of solute, the solute-solvent direct
correlation function satisfies the OZ equation

ciB
s2dsrd = hiBsrd − o

j=1,2
r j

0E dr 8hBjsur − r 8udcji
s2dsr8d, s26d

for i =1, 2. In this treatment thick adsorbed films can develop
around a big solute particle and this is manifest in the density
profiles of the two solvent species and thus inhBjsrd. It fol-
lows from Eq.s26d that information about thick films is fed
into ciB

s2dsrd. We can deduce that whenever thick film forma-
tion occurs,ciB

s2d,HNCsrd can be very different from the RPA
result −bviBsrd.

We turn attention now to the solute-solute correlation
functions. These are generated by employingFex,tern

HNC , fixing
vBBsrd as the external potential and minimizing the grand
potential functional with respect torBsrd. One finds
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ln gBBsrd + bvBBsrd = o
i=1,2

ri
0E dr 8hBisur − r 8ud

3ciB
s2d,HNCsr8d. s27d

If one now employs the mixture OZ equations in the limit
rB→0 one obtains

ln gBBsrd + bvBBsrd = hBBsrd − cBB
s2dsrd. s28d

Note that the right-hand side of Eq.s27d depends on the
solute-solvent correlation functionshBisrd and ciB

s2d,HNCsrd.
The former quantity is, essentially, the density profile of spe-
cies i around a single big particle determined by minimizing
the HNC functional and the latter is given by the OZ equa-
tion s26d. One might expect both quantities to be given ac-
curately by the HNC treatment. ThegBBsrd resulting from
Eq. s27d yields, via Eqs.s4d and s5d, an SM potential which
we refer to asWBB

HNCsrd since this is consistent with the fact
that gBBsrd satisfies Eq.s28d, the HNC equation for big-big
correlations; the latter sets the bridge functionbBBsrd=0.

As the HNC inputs only the pair direct correlation func-
tionscij

s2d,HNCsrd of the small solvent species, which should be
well described by their RPA counterparts, we adopt the fol-
lowing procedure: determine the density profiles of the two
small species around a single big particle by minimizing the
RPA grand potential functional, Eqs.s6d and s11d, and use
these as input forhBisrd, along with cij

s2d,RPAsrd for the
solvent-solvent direct correlation functions, in Eq.s26d. The
resultingciB

s2dsrd are then used in Eq.s27d to calculategBBsrd
and, hence, the SM potential—which should be very close to
WBB

HNCsrd. We find thatWBB
HNCsrd, for larger, is almost identi-

cal to the branch ofWBBsrd obtained using the brute-force
DFT method presented in Secs. II and III, for which there is
no fluid bridge. In other words, when there is no fluid bridge,
i.e., for r ;h.ht, where ht=htsr1

0,r2
0d is the separation at

which the bridging transition occurs,WBB
HNCsrd.WBBsrd and

we can infer that the HNC approximationbBBsrd.0 is valid.
However, forh,ht we find WBB

HNCsrd is very different from
WBBsrd, indicating that the bridge functionbBBsrd, omitted
from this analysis, must be substantial forh,ht. Thus we
have demonstrated thatbBBsrd must play a significant role in
determining the fluid structure when there is bridging.

We conclude that the ternary HNC functional, Eq.s24d,
describes correctly the bulk solvent-solvent correlations and
captures thick film formation in the solute-solvent correla-
tions with a vanishing solute-solvent bridge function,biBsrd
=0. For the solute-solute correlations the HNC assumption
bBBsrd=0 remains accurate when bridging is not present but
this approximation fails completely when bridging is present.
This means that a more sophisticated theory for the ternary
functional should include terms proportional to
rBsr d Drisr 8d Dr jsr 9d and higher orders. These will become
important near the onset of the transition.

VII. DISCUSSION AND CONCLUSIONS

Using brute-force DFT we have calculated the SM po-
tential WBBshd between a pair of big GCM particles in a
binary solvent of smaller GCM particles. In particular, we

have focused on the regime where the big particles are im-
mersed in the binary solvent near to bulk phase separation,
where thick films of the coexisting solvent phase adsorbed
around the big particles influence strongly the SM potential.
It is in this regime that we find bridging transitions. We show
that the insertion method for calculating the SM potential
used in Refs. 8 and 9, which is based on the ternary version
of the RPA functionals11d, is unable to incorporate the ef-
fects of bridging. This method does provide an accurate ap-
proximation forWBBshd for solvent state points away from
the binodal. The bridging that we find is of two types:sid that
due to the joining of thick adsorbed films around the indi-
vidual big particles, described in Sec. III, andsii d that due to
local condensation around a pair of particles, described in
Sec. V. Both result in a change in slope ofWBBshd at a sepa-
ration h=ht and therefore a jump in the SM force ath=ht.

Within our mean-field theory, bridging manifests itself as
a sharpsfirst-orderd transition. However, this cannot be the
case in reality since the bridging transition involves a finite
number of particles and therefore fluctuation effects will
round the transitionssee discussion in Ref. 4d. We can make
a crude estimate of the extent of rounding effects by arguing
that fluctuations should only be relevant whenuWBB

br.shd
−WBB

no br.shdu&kBT, where WBB
br.shd denotes the branch of

WBBshd where there is a fluid bridge andWBB
no br.shd the

branch without a fluid bridge. From this inequality we can
obtain the width,dht, over which the transition atht will be
smeared. We find thatdht /ht,10−2 for the state points cor-
responding to the SM potentials displayed in Figs. 6 and 7.
This measure of the rounding becomes smaller for solvent
state points further removed from the bulk critical point. For
bigger solute particles we also expect the extent of the
rounding to become smaller. At first sight our estimate of the
rounding may seem surprisingly small, bearing in mind that
the size ratio between the big solute and small solvent par-
ticles is only about 7:1. However, due to the soft-core nature
of the GCM fluid, the solvent density is high and the number
of particles involved in the bridging transition can be large.
This demonstrates one of the important differences between
the soft-core GCM and more typical hard-core fluid systems.
For hard-core particles one would not find thick adsorbed
films of the solvent were the size ratio between the solute
and solvent only 7:1. Typically, the solute must be of order
50 or more times larger than the solvent particles for wetting
phenomena to become significant—see also the discussion in
Ref. 9.

Our analysis in Sec. VI demonstrates that in order to
incorporate bridging into a fullsternaryd mixture theory, one
must implement an accurate theory for the fluid bridge func-
tions; in particular, for the solute-solvent and solute-solute
bridge functionsbBisrd and bBBsrd. bBBsrd, the solute-solute
bridge function, remains little understood but must play a
crucial role when there are thick adsorbed films surrounding
the big particles. That the bridge functions are required high-
lights the essential many-body nature of the effective inter-
action between the big solute particles. Hence, it is not sur-
prising that the insertion method combined with the ternary
version of the RPA functionals11d is unable to incorporate
the effects of bridging on the SM potential. We reiterate that
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the insertion method is formally exact; it is its use with an
approximate functional which leads to neglect of the key
features of bridging. In order to obtain insight as to what is
required in a theory for the full mixture Helmholtz free en-
ergy functional which incorporates the effect of bridging, we
consider the exact inhomogeneous Kirkwood-Hill
formula9,36 srecall Eq.s9dd,

cB
s1dsr d = − o

n=1

2 E
0

1

dlE dr 8rnsr 8dgBnsr ,r 8;ldbvBnsur − r 8ud,

s29d

for the one-body direct correlation function of the big solute
particles in the limitrB→0. vBnsrd are the big-small pair
potentials and the parameterl, with 0ølø1, is used to
“turn on” the effect of the inserted big particle via the poten-
tial lvBnsrd. One calculates the solvent response through the
inhomogeneous big-small pair distribution function
gBnsr ,r 8 ;ld, as l is increased from 0 to 1. Combining Eq.
s29d with Eq. s13d one obtains an exact expression for
WBBsrd, given by Eq.s70d of Ref. 9. Consider the case when
the solvent is near coexistence at a state point below the
single big particle thin-thick adsorbed film transition line. If
one calculatesWBBshd via Eq.s29d, thengBnsr ,r 8 ;l=0d will
correspond to the distribution arising from a fixed single big
particle located atr =−h /2 exerting an external potential on
the solvent. This big particle will be surrounded by a thick
adsorbed film. Then, turning on the effect of the second big
particle sby increasingl from zerod located atr = +h /2 one
could perhaps envisage the situation where there might be
two “jumps” in gBnsr ,r 8 ;ld for a particular value ofh= uhu.
The first would be atl=l1, when the potentiall1vBnsrd be-
comes sufficiently strong to induce condensation of the co-
existing solvent phase around this second big particle. This
jump in gBnsr ,r 8 ;ld could then be followed by a second
jump at l=l2 sl1,l2,1d, when a fluid bridge forms be-
tween the two big particles. That such complex phenomena
must be described bycB

s1dsr d, which is obtained by taking one
functional derivative of the excess Helmholtz free energy
functional Eq.s9d, attests to the degree of sophistication re-
quired in the ternary mixture functionalFexfhrijg if this is to
incorporate bridging. By employing the RPA functional in
the insertion approach one incorporates the effect of the thick
film surrounding the first big particle viarnsr d in Eq. s29d,
but neglects the effect of the thick film around the second big
particle by settinggBnsr ,r 8 ;ld=1 for all l.9 Thereby one is
unable to incorporate the effect of bridging on the SM po-
tential. This point is highlighted further by the case described
in Sec. V, where a single big particle has no thick adsorbed
film and the bridging arises from condensation around a pair
of big particles. In this situation all the information about
bridging/wetting must be generated incB

s1dsr d from a source
other than the solvent density profiles around a single big
particle, i.e., from subtle correlations in the inhomogeneous
solvent. Incorporating such correlations is a tall order for a
theory.

The simple capillaritysor sharp-kinkd approximation
used in Sec. IV to provide an approximate theory for when
bridging occurs between two thick adsorbed films seems to

be quite good. The simple form, Eq.s17d, taken with Eq.
s18d, is surprisingly reliable in determining an approximation
for ht, the separation between the big particles at which
bridging occurs, as well as providing a reasonable approxi-
mation for the slope ofWBBshd near the onset of the bridged
configuration, i.e., it provides quite a good approximation for
the SM force ath,ht. The capillarity approximation is not
reliable for smallh. Here the shape of the SM potential de-
termined from the capillarity approximation is completely
wrong, and therefore the SM force obtained from this ap-
proximation will be completely unreliable—see Figs. 6 and
7. The brute-force calculation shows that ash→0, the SM
force →0, whereas the capillarity approximation shows the
SM force tending to a nonzero constant value ash→0. We
believe the origin of this failure lies in our simple approxi-
mation s18d for the area of the fluid-fluid interface.

One issue we have not raised so far is what does one
take forvBBsrd, the bare big-big pair potential? This does not
enter our calculation of the SM potential, since in the latter it
is only vBnsrd, the big-small pair potentials, that are involved;
the big particles are treated as external potentials. Therefore,
in principle,vBBsrd could take any form, although choosing a
bare potential with a hard core would be inconsistent with
the soft-core nature ofvBnsrd. A Gaussian potential of the
form given in Eq.s1d would seem a natural choice forvBBsrd.
When one considers the GCM to be a simple model for poly-
mers in solution, then the following empirical rules for the
pair potential parameters apply between unlike
species:9,13,16,20RiÞ j

2 =sRii
2+Rjj

2 d /2 andeiÞ j ,eii .e j j . There-
fore, the choicesRBB/R11=7 andeBB=2kBT would be con-
sistent with the parameters we have used for the big-small
pair potentials.9 If we employ a bare Gaussian potential with
these parameters the big-big repulsion is negligible when
compared to the attractiveWBBsrd, particularly when there
are thick adsorbed wetting films present around the big par-
ticles. Thus, the resulting effective pair potential,vBB

ef fsrd,
given by Eq.s4d can be very strongly attractive.

If one were seeking to investigate experimentally the
effects of thick adsorbed films and bridging between colloi-
dal particles, one approach is to perform light scattering ex-
periments in order to measure the second virial coefficient,
B2.

37 As pointed out in Ref. 9,B2, which measures the inte-
gral of −r2(expf−bvBB

ef fsrdg−1) should be very large and
negative when adsorbed films are present. A rapid change to
large negative values ofB2 upon changing the solvent state
point should indicate the development of thick adsorbed
films around the colloids, thereby influencing the SM
potential.9 WhetherB2 does show a rapid variation with com-
position in the neighborhood of the thin-thick transition lines
remains to be ascertained.

Finally we note that since a pair of big particles withh
=0 exhibits a thin-thick adsorbed film transition line, at total
densities higher than the single particle thin-thick adsorbed
transition linessee Fig. 1d, there should also be a thin-thick
adsorbed film transition line at even higher densities for three
big particles whose centers coincide. This will have implica-
tions for the three-body interactions between the big par-
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ticles. Furthermore, there may be other transition lines cor-
responding to four, five, or more big particles completely
overlapping.
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