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Using density functional theory we calculate the density profiles of a binary solvent adsorbed around
a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent
exhibits fluid-fluid phase separation, and for thermodynamic states near to coexistence the big
particles can be surrounded by a thick adsorbed “wetting” film of the coexisting solvent phase. On
reducing the separation between the two big particles we find there can be a “bridging” transition as
the wetting films join to form a fluid bridge. The effectiveolvent mediatedpotential between the

two big particles becomes long ranged and strongly attractive in the bridged configuration. Within
our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated
force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a
nonzero bridge function in the correlations between the solute particles when our model fluid is
described within a full mixture theory based upon the Ornstein—Zernike equations.

© 2005 American Institute of PhysidDOI: 10.1063/1.1855878

I. INTRODUCTION bridges> Long-ranged attractive interactions are also sur-
mised for hydrophobic molecules in water at ambient
Big solute particlege.g., colloid$ immersed in a solvent  conditions® Bridging is also a purported mechanism for driv-
of smaller particles interact with each other by an effectiveing colloidal flocculatior.
potential which is the sum of their direct interaction and a  In previous worke® the wetting of a binary solvent
solvent mediatedSM) potential. Even when the direct inter- around a single big particle and the influence of these thick
action consists solely of two-body terms, the SM potentialadsorbed films on the effective SM potential between two
usually contains higher-body contributions of all ordersbig particles was investigated for a particular model fluid,
which are determined formally by integrating out the solventnamely, the generalization to mixtures of the Gaussian core
degrees of freedom. This conceptual framework yields, imodel (GCM).>®*® A Gaussian potential provides a good
principle, a much simpler effective Hamiltonian which in- approximation for the effective potential between the centers
volves only the coordinates of the big particfem certain  of mass of polymers in solutioh'®?°The approach to cal-
systems the two-body term in the SM potential may domi-culating the SM potentials was based upon the theory devel-
nate completely the corresponding direct interaction. A well-oped by Rottet al>—henceforth referred to as the “insertion
known example is a suspension of big hard-sphere colloidgethod.” The insertion method works within the framework
in a solvent of small hard spheres. There the SM potentiabf density functional theoryDFT) (Ref. 21 and uses as
between the colloids is termed the depletion interaction, an¢hput the density profiles calculated aroundiagle big par-
this is the only contribution to the effective potential for ticle in order to calculate the SM potential betweepadr of
separations greater than the big hard-sphere diathtehe  big particles*®° Although the insertion method is formally
case of anonhard solvent which is at a state point near to exact, in practice, one must employ an approximation for the
fluid-fluid phase separation, big solute particles can be suffree energy functional of the mixture of big and small
rounded by a thick adsorbed “wetting” film of the coexisting particles? For state points near to coexistence we found thick
solvent phasé.If two such big particles become sufficiently adsorbed films around the big particles resulting in long
close, there can be a “bridging transition” as the wettingranged, strongly attractive SM potentials whose range was
films surrounding the two big particles join to form a fluid getermined by the thickness of the wetting film. However,
bridge of the wetting phase—see, for example, Ref. 4 angising the insertion method, we were unable to detect any
references therein. In wet granular media these brid@ng direct sign of bridging in the SM potenti&f
capillary) forces lead to strong and very short-ranged inter-  The present work can be viewed as going a significant
actions. Tip-substrate interactions in atomic force microssiep further than Refs. 8 and 9. Here we investigate the same
copy can be long ranged due to the formation of capillarysystem: two large solute Gaussian particles, immersed in a
binary GCM solvent near to phase separation. However,
¥Electronic mail: Andrew.Archer@bristol.ac.uk whereas the previous work used the elegant insertion
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method, the present work can be viewed as the “brute-forcetween two big solute GCM particles. Section Il presents
approach to the problem. Using an accurate DFT for theesults for the density profiles and SM potentials in the re-
binary GCM solvent of small particlé&%%1we calculate gime where there are thick adsorbed films around a single
explicitly the solvent density profiles around a fixed pair of big particle, resulting in a bridging transition when two big
the big GCM particles, treating the latter as external potenparticles are sufficiently close together. In Sec. IV we present
tials, and determine the resulting grand potential. By repeata simple analytic “capillarity” approximation which de-
ing this calculation for a range of values of the separatiorscribes qualitatively the onset of the bridging transitions that
between the centers of the two big particles we obtain thave find. Section V describes the effect of the formation of a
SM potential. We find, within the presefinean-field DFT  thick adsorbed film around a pair of big particles, in the
approach, that when thick adsorbed films are present theigortion of the phase diagram where there is no thick film
can be a bridging transition as the separation between th@round a single big particle and Sec. VI describes our dem-
two big particles is decreased, i.e., the formation of a bridg-onstration that bridging between big particles is related to the
ing configuration gives rise to a discontinuity in the deriva-bridge function. Finally, in Sec. VII, we discuss our results
tive of the SM potential. Bridging has been investigated pre-and draw some conclusions.

viously within (coarse-grainedocal DFT (in contrast to our

nonlocal treatmentin the recent study of Star&t al? for

big hard spherical colloids immersed in an isotropic liquid|; MODEL FLUID AND SM POTENTIALS
crystal host close to the isotropic-nematic phase boundary.

Similarly, Andrienkoet al® calculated bridging density pro- We determine the SM potential between two KB)
files of a solvent adsorbed between a big colloid and a planaBaussian particles immersed in a binary solvent of smaller
wall using a local DFT. Gaussian particles. The GCM, in which the particles of spe-

We also investigate the SM potential between two bigciesi andj interact via purely repulsive Gaussian potentials
GCM particles in a region of the solvent phase diagram near b2
the binodal but lying outside the single particle thin-thick  vij(") = & exp(~r7/Ry), 1)
adsorbed film transition ling,where a single big particle 113161720

does not have a thick adsorbed wetting film of the coexistin P2 simple model for polymers in SOIUt'b. un
) . - articular, Ref. 1 provides a good general introduction to the
solvent phase around it. Adsorption still influences strongl

the SM potential. We find an analog of capillary condensa—GCM)' For the binary G.CM solve_nt we choose pair potential
arameters corresponding to a binary mixture of polymers of

tion; as the two big particles become sufficiently close, th L : 4 ‘
. S . . ngth ratio 2:1, as were used in previous work on this model
composite object is large enough to induce condensation q‘f

- 18,9,16,17 - -
the coexisting solvent phase around the pair of big particlesﬁueld': Be :;hgz (\éazlule/i fll_f)@zazé?lel /06'6250' F;fiRFlzl ?38::1?3
This effect is somewhat different from that which can occur, -+ 22~ = B 128 71T e T
bet o bia hard ticles i vent i basic length scale in the system. For this choice of param-
cIWeen two big hard-core particies in a solvent near 10 oo ¢ the binary mixture exhibits fluid-fluid phase separation.
existence. When a pair of such particles are sufficientl

I brid f th st h d . tyl'he phase diagram of this binary solvent is plotted in the
close, a bridge of the coexisting phase can condense in g, jongiy,0= 09+ 40 versus concentratior=p3/o° plane

gap between the two big particles, without there being thichn Fig. 1 (p° are the bulk densities of the small particles of
wetting films adsorbed on each of the big partiélds. the s ecies/:ly 2—see also Ref. 16
present soft-core system the strong adsorption is not confined " Sl\/i potential betweeﬁ tvvb big particles, labefed

to the space between the big particles, rather it extendgndB with centers at , andr, separated by a distanbeis
through the whole region in which the two big particles are ' ’

) _ i 2 F< i given by the difference in the grand potential,
situated. This local condensation also results in a jump in th
S_M force t_)etween the two big particles with the SM poten-  W,g(h) = Q(ra—rg/=h) - Q(ra-rg/=). (2
tial becoming strongly attractive for small separations.

In the final part of the present work we relate our resultsThis result can be reexpressgédvially) in terms of excess
for the SM potential to an approach for calculating the SMgrand potentialsop,, = (-, wherei=A, B, and(}, is the
potential based upon the mixture Ornstein—Zern{k¥?) grand potential of the bulk solvent in the situation where
equation$*?° By solving the OZ equations together with a there are no big particles present. Then,
closure relation one can calculate the various fluid correla-
tion functions. It is well known that if one makes a diagram-
matic expansion for the fluid correlation functions the hyper-
netted chainHNC) closure approximation neglects a certain
class of(bridge diagrams which, taken together, is termed
the bridge functiorf? We show that in order to account for
the phenomenon of bridging of solvent between big particle
within a OZ approach to the fluid structure, one must incor
porate an accurate theory for the bridge diagrams.

The paper is laid out as follows. In Sec. Il we describe ve(h) = vgg(h) + Weg(h). (4)
briefly our model fluid, the GCM, and the DFT used to cal-
culate the solvent density profiles and the SM potential beRecall also that

WAB(h) = wé‘qurA - rB| =h) - wéx_ ng- 3

Note that wLw the excess grand potential for inserting a
single big particle of species is equal tou,, the excess
chemical potential of big specigsin the limit of the bulk
density of this species’ — 0.>%°The effective pair potential
Detween two identical big particles is then the sum of the
“bare interactionygg(r) and the SM potential,
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FIG. 1. The bulk phase diagram for a binary mixture of GCM particles with p

€1,/ €,,=0.944 andR,,/R;;=0.665, equivalent to a mixture of two polymers
with length ratio 2:1(see also Ref. 16 p° is the total density and is the

concentration of the smaller species 2. The solid line whose ends are de-
noted by filled circles is the thin-thick adsorbed film transition of the binary
fluid adsorbed around a single big GCM particle with pair potential param-

etersBeg;=1.0, Beg,=0.8,Rg:/R;1=5.0, andRg,/ R1=4.972—see Ref. 9. It
meets the binodal at the wetting poitupper circl¢ with x=0.975 and

poRflz 10.1[note these values differ slightly from the result quoted in Ref.

9—see footnotéRef. 30] and terminates at a critical poifiower circle

with x=0.94 andp®R%,=7.5. The solid line whose ends are denoted by filled Eq.
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5}—e>{{l)y}]
9p,(r)

is the one-body direct correlation function, which is a func-
tional of {p,}. In an exact treatment the density profifes}
satisfying Eq.(8) would yield the exact grand potenti@l as
the minimum ofQ,.* At this point we also recall that the
two-body direct correlation functions are given by the sec-
ond functional derivative

S Fel{p.)]
8p, (1) Spg(r’)’

For the GCM the following approximate excess Helm-
holtz free energy functional turns out, despite its simplicity,

to be remarkably accurate at high densities
R3 =5 1,9,12,13,16,27
11 '

cM(r)=- (9)

cHr ) ==p (10

FUN=33 [ o [ dp e v, -0,
vé

11

wherev, ((r) is the pair potential between the small solvent
particles of species and¢, given by Eq.(1). The functional,
(12, is that which generates the random-phase approxi-

squares is the thin-thick adsorbed film transition of the binary fluid adsorbednation (RPA) closure,c(vz)'RP‘Yr ,I)==Bv VV§(|F -r'|), for the

&

around a composite pair of the same big GCM particles at zero separatiogaijr direct correlation functions™>*3®The higher the den-

h=0. This transition line meets the binodailpper squaneat x=0.995 and

p°R3,=14 and terminates at a critical poiftower squargwith x=0.973 and
03 —

p°R;,=8.5.

vER(h) = —kgT In ggg(h), (5)

where ggg is the big-big radial distribution function in the
limit of the big particle bulk density)g—>0. In the present
work we use DFT to obtain the quantities, (|r »—rg/=h)
and wj,

sity, the more accurate is the RPA for this soft-core madel.

In the present work we choose the external potential to
correspond to two fixed big Gaussian particles of the same
size, separated by a distane

V,(r) = eg, exp(— (r +h/2)?/R3 )
+ e, exp(— (r —h/2)%R3 ),

with »=1,2 and wheréh is a vector along the-axis, with
|h|=h, i.e., the centers of the big particles arezat+h/2.

(12)

In DFT one calculates the solvent one-body density proThroughout the present study we choose the external poten-

files, {p,(r)}, for a given set of external potentiald/,(r)},
by minimizing the grand potential functiond,

WHp. = Fid{pt] + Felip.t]
-2 f drp,(r)[x, = V,(r)], (6)

where u, are the chemical potentials for the two species,

tial parameters to bgeg;=1.0, Beg,=0.8,Rg1/R;1;=5.0, and
Rg,/R11=4.972, the same values as those used for the big-
small particle pair potentials in much of the work in Refs. 8
and 9. With this external potential the solvent density profiles
have cylindrical symmetry, i.e., the density profiles are func-
tionsp,(z,r), where thez-axis runs through the centers of the
two big particles and is the radial distance from theaxis.

If the external potential on the solvent were exerted by hard

=1, 2, of solvent particles. The ideal gas part of the intrinsicP@ticles, special care would be required to ensure that the

Helmholtz free energy functional is

Fllp 1= ke T f drp,(N[In(ASp,(r)) - 1], )

whereA , is the thermal de Broglie wavelength of specigs
and F.{p,}] is the excess part of the intrinsic Helmholtz
free energy functional. Minimizing Edq6) together with Eq.
(7) one obtains the Euler—Lagrange equation

0=ksTIn A3p,(r) —keTAV(r) = p, + V,(r), (8)

where

hard boundary is compatible with the grid of the numerical
calculations in order to avoid numerical artifacts in the con-
tact density’® One would have to employ either matching
coordinate systems, such as the bispherical one used, e.g., in
Refs. 22 and 29, or even more sophisticated finite-element
methods with adaptive mesh sizeOne of the appealing
features of thesoft-coreGCM used in the present investiga-
tion is that we can avoid this problem and perform our cal-
culations on a uniform grid in cylindrical polar coordinates.
In Fig. 2 we display a typical density profile for a one-
component solvent of particles of species 1, with the external
potential given by Eq(12) with h/R;;=12. Having calcu-
lated the solvent density profiles for a given separaktiaf
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FIG. 2. The density profile of a one-component fluid of Gaussian patrticles,

with bulk densityp2R§1:6.9, around a pair of big Gaussian particles, whose 12
centers are located on tkexis a distancé/R;;=12 apart. The contours in 6
the z-r plane correspond tp,(z,r)=6.82, 6.84, 6.86, and 6.88. 4
2
0

big particles, we can insert these into E). to calculate the
(excesy grand potential and the SM potentilgg(h) from i 6 f,R11
Eq. (3). In Fig. 3 we display the SM potential between two 2
big GCM particles, calculated for a one-component solvent
with bulk densitypIR?,=6.9, i.e., the state point correspond- FIG. 4. Density profilesp,(z,r), »=1,2, for a solvent with total density
ing to the profiles in Fig. 2. Figure 3 should be compared”ORilzs'S and concentratior=0.948, a state near to phase separation lo-

; . N . cated inside the single particle thin-thick adsorbed film transition (éee
with Fig. 2 of Ref. 9. The open C'_rdes are the_ re_SUItS_ fromFig. 1). The centers of the big particles are a distaht®;;=17 apart. Note
the present “brute-force” calculation. The solid line is thethe presence of thick adsorbédetting films and the fluid bridge between
result obtained using the insertion method, where one calcube patticles. The contours, plotted in ther plane, corespond to
lates only the solvent density profiles around an isolated’gl(z'.r)Rﬂ.‘l' 2, and 3 ang,(z,)Ry;=2-8 in increments of 2. The bridged

. . . onfiguration is the stable one for this valuehdRy;.
single big particle and then uses the general résult,

BWgg(h) = C(BD(h — oo;pg —0) - C(Bl)(h;pg—> 0), (13 able for this point in the phase diagram, and generally for
_ _ _ _ other state points where no thick adsorlpeetting) films are
i.e., one calculates the difference in the excess chemical p@yesent around the big particles. The dashed line in Fig. 3

tential between inserting the second big particle a distéince corresponds to the analytic approximation ¥kg(h) pre-
from the first and inserting it dt=. As emphasized in the gented in Ref. 9,

Introduction, Eq.(13) is formally exact when we know the ure 3 - 2/or2
exact free energy functional for a mixture of big and small BWeg () =~ (7/2)**Beg1p Ry, expl— h72Rg),  (14)
particles. Here we use the same RPA functiofi) ex-  \yhere P =pBeai/ (1+73286,,R3p9). The agreement be-

tended to i(rg:lude a third speci& in order to find an ap- tween this approximation and the result of the full numerical
proximatecg” in Eq. (13)—see Ref. 9 for more details. The pFT calculations is remarkably good.

results from the two different routes are almost indistinguish-

lll. THE SM POTENTIAL WHEN THERE ARE THICK
ADSORBED FILMS: BRIDGING

We now consider the case when thick adsorbed films
develop around the big GCM patrticles. The circumstances in
which this can occur are discussed in Refs. 8 and 9. In gen-
eral there can be thick adsorbed films when the small solvent
particles are in a state near to phase separation. For the
present mixture, the big GCM patrticles favor species 1 of the
small solvent particles, and so thick adsorbed films of the
coexisting phase rich in species 1 can develop when the big
particles are immersed in the solvent at a state point lying on
the right hand side of the binodal, which is poor in species 1.
In Refs. 8 and 9 it was found that thick films develop via a
_2§ . . thin-thick transition out of bulk coexistence. The locus of

0 5 R 10 15 these transitions is shown as the solid line joining filled

" circles in Fig. 1. Note that this transition line meets the bin-

FIG. 3. The SM potential between two big GCM particles in a one- 0dal at a wetting point whose density is somewhat higher
component solvent of small GCM particles, with bulk denglfi??,=6.9.h  than that quoted in Ref. 9. This discrepancy is associated

is the_ separation between the two blg particles. The solid line is the DF-RIYith the existence of metastable minima in the free en%orgy'
insertion method results, the open circles are the results from the pres

e . X ; '
brute-force calculatiofthe two are almost indistinguishablend the dashed i .Flgs. 4 and 5 we Q|splay deq5|ty p_roflles calculated for a
line is the analytic result, Eq14), obtained in Ref. 9. pair of big particles immersed in a binary solvent of small

BWas' (i)
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1012 FIG. 6. The SM potential between two big GCM particles in a binary
% solvent of smaller particles for the same state point as in Figs. 4 and 5, i.e.,
Ryy with total bulk densitypORf1:8.5 and concentratiox=0.948.h is the sepa-
ration between the centers of the two big particles. The dashed line is the
result forWgg(h) obtained using the insertion method, the dot-dashed line is
FIG. 5. Density profiles for the same state point and separdatit®, =17, the sharp-kink resultsee text, Sec. IVand the solid lines denote the results
as Fig. 4, but now there is no fluid bridge between the big particles. Thifrom the brute-force calculation. In the brute-force calculation, one finds
configuration is metastable. that there are two branches df;g(h) (see inset for more detajleach with

a metastable portion. The branch with the smaller valud/gi(h) is stable.
This corresponds to the configuration with no bridge tior h,, and to the

GCM particles with bulk density)°R§1:8.5 and concentra- bridged conf_igurat.ion f0_h<_ hl._ At ht/R11:_17.4, Where the two_ bra_nches
tion x=0.948, a state point near to coexistence, located ir)sid%rc;f]z‘ ;h,\jrfeo'ri: ;t'stﬁiosnggggﬁgoﬁe gradientdfy(h). i.e., there is a jump
the single particle thin-thick adsorbed film transition line

(see Fig. 1 (Figure 6 of Ref. 9 displays the solvent density

profiles around a single big particle for this state poiit.  istence of two distinct branches of the grand potential. Thus
Figs. 4 and 5 the centers of the big particles are a distandédoes not appear to include explicitly the effects of a bridg-
h/R;;=17 apart and there are thick adsorbed wetting filmgng transition. The insertion method does predict very
around the big particles. However, in Fig. 4 there is a fluidstrongly attractive SM potentials of a similar magnitude to
bridge between the two particles, whereas in Fig. 5 there i§hose from full DFT, but does not yield the correct shape or
no fluid bridge. This second set of profiles corresponds to &nge forWgg(h). In contrast we recall from Sec. Il that in
metastable situation. For this state point the bridging transithe regime where there are no thick adsorbed films, the re-
tion occurs at a slightly larger separatiofiR,;=17.4; thisis  sults from the insertion method and the brute-force method
where the bridged and unbridged configurations have equare in good agreement.

grand potential. In Fig. 6 we display the SM potential

Wgg(h) for this state point. There are two distinct branches, ; : : :
corresponding to bridged and nonbridged configurations. For
h>h, the unbridged configuration is the stable one, whereas
for h<<h, the bridged configuration becomes stable. Since the
two branches oWgg(h) have different slopes there is a dis-
continuity in the SM force, —Wgg(h)/dh, at h,, the separa-
tion where the transition occurs. The extent of the metastable
portions is substantial; these extend well beyond the equilib-
rium transition. This type of metastability, with accompany-
ing hysteresis, was also found by Statikal > in their recent
study of the bridging of the nematic wetting film between
two colloids immersed in the isotropic phase of a liquid crys-

BWis(h)

tal. We display in Fig. 7 the SM potential calculated in the

. . . . -700 1 L 1 " L
same way for a different point in the phase diagram, closer to 0 5 10 15 20 25
the solvent bulk critical point, at a total densi§R>,=6.9 h/R,,

and Concgntratlorx—o.s& This State. point is also near to FIG. 7. The SM potential between two big GCM particles in a binary
bulk coexistencésee Fig. 1 In both Figs. 6 and 7 we com- solvent of smaller particles near to phase separation, with total bulk density
pare the SM potential calculated using the present bruteR},=6.9 and concentration=0.88.h is the separation between the two
force approachsolid lineg with the results obtained using pig pgrticles. The dashe(_i Ii_ne is the result for the SM potential from the
the insertion methoddashed ling as described in Ref. 9. insertion method, the solid lines are the results from the brute-force calcu-
. N . lation and the dot-dashed line is the sharp-kink result. In the inset we display
There is a significant difference between the results from thg magnification ofss(h) for largeh, showing the two branches crossing at

two methods; the insertion method does not capture the exxy/R;;=22.7 and giving rise to a jump in the SM force.
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IV. APPROXIMATION FOR THE SM POTENTIAL WHEN When h>2l, i.e., no fluid bridge is present, then
BRIDGING OCCURS A(l,h)=8m12, and Eq.(17) givesWgg(h)=0. When there is a

In Ref. 9 we found that when there was a thick adsorbecpndge’ we approximate the end sectionsAdf,h) by the

film around a single big particle, a good approximation 1Eorsun‘aces of two sections of spheres with radiygnd the

the excess grand potential of a single big GCM particle im_bridge surface by the surface generated by rotating the arc of

mersed in a binary GCM solvent of small particles is a circle, of radiuss, about the_ axis pass_ing through the cen-
, ters of the end sphere sectioftke z axis). We denote the
width along thez axis of the bridge section byw?and the
Wy = %Wa/zEBngypioefo Al? (), (15) diameter of the bridge section at the midpoint between the
” centers of the end sphere sections by Phe surface area of
where pS°* are the solvent bulk densities in the coexistingthe two end spherical sections is#4l +h/2-w) and the sur-
phase, i.e., the phase that forms the adsorbed fili®.the  face area of the bridge section ismgs+d)arcsir(w/s)
thickness of the adsorbed filth~Rg,, but we determine its - 47sw. Requiring continuity of the surfaces where the end
value by calculating explicitly via DFT, the density profiles and bridge sections meet and also requiring continuity in the
around a single big particland () is the fluid-fluid surface  gradients at the point where these sections join, we eliminate

tension, which we approximate by(«), the surface tension g anqd to obtain the following expression for the total sur-
of the planar free interfacéhis is calculated using the ap- face area:

proach presented in Ref. 1@ he first term in Eq(15) is the
excess grand potential for inserting a single big particle into
the coexisting phase, obtained from the RPA bulk equation of

state? and the second term is the contribution from forming (L) = 2mwlh {Warcsir{ h/2 ‘W)

a spherical fluid-fluid interface. Generalizing to two big par- ’ (h2 -w)?"

ticles we might therefore expect the following approximation 42|

to be reliable: - h/; ” + 47 (1 +h/2 -w). (18

2
wge(h) = 22 7%, RE,p°™ + ALY (Lh),  (16)

= We choose the valuav=w, which minimizes A, i.e.,
where A(l,h) is the surface area of the fluid-fluid interface 0A/07W|w:w0:0 and use this prescription for calculating
between the adsorbed film of the phase rich in species (| h) with Eq. (17) to calculate the SM potential between
which develops around the two big particles and the bulkyo pig GCM particles at state points near to coexistence.
fluid rich in species 2y'(I,h) is the surface tension, which o the case when the small particle solvent has a total den-
we again approximate by(x), the planar fluid-fluid interfa- sity p0R§1=8.5 and concentratiox=0.948, corresponding to
cial tension. A similar sharp-kink or capillarity approach was 4 s, DET calculation of the SM potential in Fig. 6, we
used in Ref. 4 to investigate bridging for very big hard-coreﬁnd that BR%,%()=0.830, and that the film thickness
solute particles that induce thick adsorb@udetting films, /Ry =7 (seellFig. 6 in Ref. D Using these values in Eqgs.

S;Jthtssvn;em?eml efsagcj:rteiieafrilrssii;Orlesog;gglfirzs:gg:érﬁ flrs(tl8) and (17), we calculate the SM potential for this state
9 9 b gep point. The result is the dot-dashed line displayed in Fig. 6

g]rengrg%%I;oosgrEg;?r? g;a}_'eoevls; eor' ;’I,\:ihseir; Lhoet tbhlg E:srgCI\(/a\/sheWhiCh is in good qualitative agreement with our results from
h=0 the first term in E'q (16) is a,lccurate since two' big rthe full brute-force calculation of the SM potential, particu-
particles lying on top of each other result in an external po?crlci::rv\\lleem:sso(Lf:egetﬁirstgi%vglcearzggreoz;dzgzgg :;?rtlﬁglc:;;se

tential that has the same form as that due to a single bi . o3
particle with e, twice the value for one of the big particles When the small particle solvent has a total dengitiR;,

taken alone. In other words, if we take the first term in Eq.=6-9 and concentration=0.88, corresponding to the full
(15) and make the substitutics, — 2eg,, then we obtain the  DFT calculation of the SM potential in Fig. 7. For this state
same first term as in EGL6). Given this observation the first POt BRI;¥(>)=0.152 and /Ry;=9.6 (see Figs. 4 and 9 in
term in Eq.(16) should be accurate for both lareand for Ref. 9, and the SM potential is shown as the dot-dashed line
h=0. Thus, by continuity we expect it to be accurate for allin Fig. 7. Again, the results are in qualitative agreement with
values ofh. The overall accuracy of Eq416) should depend those of the full calculation. In particular, this simple ap-
upon how accurately we determine the surface #@ah) proach provides a surprisingly accurate means of estimating

which appears in the second term. the value ofh at which the bridging transition will occur. If
Using Egs.(16), (15), and(3) we can obtain an expres- we assume that bridging will only occur whéfizg(h) <0
sion for the SM potential, the resulting values df; underestimate the results of the full

calculation by only a few percent in both cases. Even for
small values oh the results of the sharp-kink approximation

We now present a simple model f&(l,h) (see also Ref. 32  for Wpg(h) are of the correct magnitude. However, this ap-
which we expect to be reliable for valuestohear to where proximation fails to reproduce the correct shapeéfg(h)

the bridging transition occurs. for small h.

Weg(h) = [A(,h) = 871%]y(). (17)
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V. THICK ADSORBED FILMS ON COMPOSITE 300

PARTICLES 200 |

100

In the previous sections we considered only state points

near the binodal where we know that a single big GCM 100 ey
particle is “wet” by a thick adsorbed film of the coexisting

phase rich in species 1, i.e., state points inside or below the 5;_9 200 r

single particle thin-thick adsorbed film transition line. How- £

ever, there can also be pronounced effects on the SM poten- =400 [

tial due to the presence of thick adsorbed films for state -500 -

points outside the single particle thin-thick adsorbed film -600

transition line(see Fig. 1, where a single big particle im- -700 |

mersed in the solvent does not develop a thick adsorbed film. _800 . , . . . , .
When two big particles are sufficiently close together the o 2 4 6 8 10 12 14 16

. . : - h/R
resulting composite object can be sufficiently large that a "

thick film is adsorbed. This effect is somewhat analogous t@|G. 8. The SM potential between two big GCM particles in a binary
the case for big hard-core solute particles, where for certaisolvent of smaller particles with total bulk densjiJR},=11 and concentra-
state points for which no thick adsorbed films are presem(!ion x=0.983 (this state point is at bulk coexistence, outside the single
. . . .particle thin-thick adsorbed film transition line, but inside the thin-thick
caplllary condensation of the coexisting phase can occur Iridsorbed film transition line for a composite pair of completely overlapping
the space between the two big particles, provided these comg particles—see Fig.)1h is the separation between the centers of the two
sufficiently close togethér®?We cannot strictly describe the big GCM particles. The dashed line is the result Wgg(h) obtained using

phenomenon we observe as capillary condensation becau%.‘g insertion method and the solid lines denote the results from the brute-
orce method. For this state point a single big particle does not develop thick

the big particles that we consider in the present work ha\_/eac_lsorbed film, but when two big particles are sufficiently close together the
soft cores. Nevertheless, the present phenomenon has a sinmsulting composite object can develop a thick adsorbed film. The two
lar effect on the SM potential, i.e., there is a jump in the SMPbranches ofWgg(h) correspond to configurations without adsorbed films

. . ' . . (stable at largén) and with films(stable at smalh). These cross at/Ry;
force on reducmg the sepgratlhnAs mentlon?d above’.thls =10.2, resulting in a discontinuity in the gradient\0gg(h) and a jump in
phenomenon occurs outsi¢leut close tg the single particle  the sSM force.
thin-thick adsorbed film transition line. However, its occur-

rence is restricted to a particular region of the phase diagram), , . .
If one considers two big particles with full overlap=0) sorbed film around the two particles. The change in the SM

- . . " .__potential is very pronounced; the potential becomes much
one can calculate the thin-thick adsorbed film transition Ilnep yp P

. . . N . .. more strongly attractive—see Fig. 8. The insertion method
for this composite object. This line is higher in total density (dashed lingaccounts extremely well for the largebehav-
than the corresponding single particle transition lisee Fig.

. ior of the SM potential. It also describes accurately the meta-
1) and serves as an upper bound for the regime where ca

i d " - the latter | ticted to th Rable portion ofWgg(h) for h below the transition value.
tary condensation occurs, the 1atler1s restricted 1o e 1eqyever, it fails completely to describe the stable, strongly
gion between the two transition lines.

Th lvent densit il d two bi ficl attractive portion arising from the formation of the thick ad-
€ solvent density proliles around two big partiCleSg, ey fiim around the two particles; it underestimates the

with h suffipie_ntly_ small that this con_dengatio_n has .Occurredstrength of the attraction by a factor of about 10. This is not
are very similar in form to the profiles in Fig. 4, i.e., the too surprising, given that this method inputs only the density

conde_nsauo_n does not just occur in the space b_etween trb‘?‘ofiles around a single big particle and that these exhibit no
two big particles, as would be the case with a pair of hard-thick adsorbed films for this state point

core big particles. Rather, due to the soft-core nature of the
GCM, the adsorbed film spreads around the whole region in
which the two big particles are situated. _VI. BRIDGING AND THE BRIDGE FUNCTION

In Fig. 8 we display the SM potential between two big
GCM particles in a binary solvent of smaller particles with We recall that the SM potentidlVgg(r) is related via
total bulk densityp°R};=11 and concentration=0.983. This  Egs.(4) and(5) to the pair correlation function between sol-
state point is located at bulk coexistence above the singlate particlesggg(r), in a bulk ternary mixture which consists
particle thin-thick adsorbed film transition line but inside the of a single, big solute specieB and two solvent species,
transition line for the composite particle—see Fig. 1. Forconsidered in the dilute limit of solutpg— 0. Since integral
large values oh the SM potential calculated via the brute- equations are a standard tool to determine bulk pair correla-
force approach is in good agreement with the results fromion functions in the theory of classical liquidit is natural
the insertion method. At this state point the insertion methodo analyze the SM potential within this framework. However,
does not include any effects of thick adsorbed films since theve recall from the outset that while integral equation theories
inputs into this theory are the density profiles around a singlévave achieved remarkable precision in the description of
big particle; for this state point a single big particle has noone-component bulk fluids, integral equation closure ap-
thick adsorbed film. However, dsis decreased the results of proximations are generally less reliable in multicomponent
the full DFT calculation show that there is a discontinuity in mixtures, especially for situations where the size of one-
the gradient ofWgg(h) due to the formation of a thick ad- component becomes much larger than the others leading to
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the.possibility of thick film adsorption or wetting p.henomena fngC[{pi}] ~ f‘;f’/’[{pi}], (23
or, in the case of hard-sphere mixtures, to depletion phenom-
ena. where F3P"is the RPA functional defined in Eq11).
Before we analyzeygg(r) in the ternary mixture, it is We have seen in earlier sections that for a fixed big

instructive to point out some features of the two-componenf3aussian particle exerting an external potential on the sol-
solvent mixture which provide a relationship between thevent close to coexistence, the RPA functional accounts for
hypernetted chaifHNC) integral equations and the RPA the formation of a thick adsorbed film. It also accounts for
density functional used in the present work. Diagrammaticcomplete wetting atz?Hﬁlémar wafl. Owing to the weak den-
analysis yields the following standard relationships betweesity dependence af.”"™ () we also expect the HNC func-

the pair correlation functions in a homogeneo(milk)  tional to describe thick film formation and complete wetting.
mixture?* [This is in sharp contrast to simple fluids of the Lennard—

Jones type where the harshly repulsive core in the inter-
_ @0 = 0 / I NA@ atomic potential induces a strong density dependence of the
VURCHUEDY p"f drhyJr = r'heg’(), (19 direct correlation functionc®(r) and the HNC functional
(21) fails to account for complete wettirig:>7)
In g; (r) + Buy;(r) = hy(r) - Ci<12>(r) + by (r), (20) ~ Explicit minimization of the HNC functional for a binary
mixture in the presence of an external potential due to a
whereh;;(r)=g;;(r)— 1. The first equation is the OZ equation single solute particle yields the HNC solute-solvent integral
for binary mixtures and the second provides the formallyequations. These can also be derived from the test particle
exact closure to the OZ equation in terms of fgenerally  equations of the HNC functional for the ternary mixture of
unknown bridge functionb;;(r). The bulk densities of the binary solvent plus solute in the dilute limit of the solute,
two solvent species are denotedfb&kzl,Z). Itis a special pg—0. This functional is linear inog(r) and is, at most,
feature of the binary GCMor related soft-core modeglshat  quadratic in the other density profiles. It is given by
its pair correlation functions are very well described within

k=1,2

the HNC approximatioh'#2"33yhich amounts to setting HNC = FHINC 4 HNe f dr pg(r)

bj;(r)=0. We denote the corresponding solution for the pair

direct correlation function bg!?""™(r). The relation to den- 1 NG

sity functional theory follows by noting that the HNC equa- - ZBJ de dr'_E cig™N(r 7))

tions, Eq.(20) with b;;(r)=0, are identical to the test particle 1=1,2

equations obtained from a DFT with the excess free energy XAp;i(r)pg(r’). (24)

functionaf* HNG ( Ore - R .
Here,ug ~({p;}) is the HNC insertion free enerdghemical

potentia) for inserting a single solute particle into the bulk

Fox Upit]=Aelip!h + igz dr " “Apy(r) solvent with densitieg? (i=1,2). Analogously to Eq(22),
o uiNCis given by
1 ' @HNC/ [, _ ¢
Zﬂf drf ' 2 o) Bug"= 2 o f dr (3hig(n)[hig(r) = cfg"™(r)]
i=1,2
Api(r)Api(r’), 21
XApi(r) p,(r) (21 —Ci(é)'HNC(I’)), (25)

corresponding to a Taylor expansion to quadratic order in . )
Ap,(r) about the bulk densities. The test particle equationd’here the solute-solvent pgw(g)o&%aﬂon functigg(r) and
follow by choosing as external potentials the interparticlethe direct correlation functionig™"(r) are determined by

potentialv;;(r), minimizing the HNC grand potential func- Solving the solvent-solvent and solute-solvent HNC equa-

tional with respect tqy;(r) and identifyinggji(r)Epj(r)/po tions. In the dilute limit of solute, the solute-solvent direct
IR . . . g .

In Eq. (21), Api(r)=pi(r)—p° and As({p%}) denotes the ex- correlation function satisfies the OZ equation

cess Helmholtz free energy of the bulk solvent. The HNC P o P
chemical potential is given by g =hg(r) - > ij dr'hgi(|r =r'eP(r'),  (26)
j=1,2
BuNC= 2> pf f dr (3 (Nh; (1) = 2PN fori=1, 2. In this treatment thick adsorbed films can develop
=12 around a big solute particle and this is manifest in the density
_ C(_Z),HNC(r)) (22) profiles of the two solvent species and thushy(r). It fol-
ji :

lows from Eq.(26) that information about thick films is fed
Previous results for the GCM showed that the pair correlainto ci(é)(r). We can deduce that whenever thick film forma-
tion functions obtained from the HNC were similar to thosetion occurs,ci(é)'HNC(r) can be very different from the RPA
obtained from the RPA'***33and that the fluid-fluid bin- result Bv(r).
odals from the RPA and the HNC approximation were close  We turn attention now to the solute-solute correlation
to each othet" If one neglects the weak density dependenceunctions. These are generated by employﬁﬁ\{gm, fixing
of c}iz)’HNC(r) and sets:fiz)'HNC(r):cfiz)'RPA(r):—,iji(r) then  vgg(r) as the external potential and minimizing the grand
one can show for the binary mixtures 1, 2, potential functional with respect tas(r). One finds
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have focused on the regime where the big particles are im-
In geg(r) + Bups(r) = X Piof dr’hgi(|r =r'[) mersed in the binary solvent near to bulk phase separation,
=1.2 where thick films of the coexisting solvent phase adsorbed

X ci@HNC(r 1y, (27)  around the big particles influence strongly the SM potential.

It is in this regime that we find bridging transitions. We show
that the insertion method for calculating the SM potential
used in Refs. 8 and 9, which is based on the ternary version
In ggg(r) + Bugs(r) = hgg(r) — c2X(r). (28)  of the RPA functional(11), is unable to incorporate the ef-
fects of bridging. This method does provide an accurate ap-
) X roximation forWgg(h) for solvent state points away from
solute-solvent correlation functiong(r) and cig"™(r). tphe binodal. The bBriBéging that we find is oFf)tWO typéi;:{that

The former quantity is, essentially, the density profile of SP€4ue to the joining of thick adsorbed films around the indi-

ciesi around a_single big particle dgtermined by minimizing vidual big particles, described in Sec. lll, aid that due to
the HNC functlor_1al and the latter is given by the O,Z €4Uascal condensation around a pair of particles, described in
tion (26). One might expect both quantities to b_e given ac-g.. v/ Both result in a change in slopeWs(h) at a sepa-
curately l?y the HNC reatment. Thgss(r) resultlpg frqm ration h=h, and therefore a jump in the SM force lat h,.
Eq. (27) yleldg,/\,\q,\?CEqs@) and_(S?, an SM potenyal which Within our mean-field theory, bridging manifests itself as
\tﬁe trefer to at' f‘?B (2 S?g € ttr:] |s|_||s’,\l<(::on3|st?p t V\]’c'th tt)he tf)‘f"Ct a sharp(first-ordep transition. However, this cannot be the
a ngE;(r) s.atlhs I?Stt al t), the brid efquatlon or_olg— "9 case in reality since the bridging transition involves a finite
correlations; the latter sets the bridge functigf(r) =0. number of particles and therefore fluctuation effects will

As the HNC inputs only the pair direct correlation func- round the transitiorisee discussion in Ref)4We can make

. (2),HNC : .
tionsg; (r) of the small solvent species, which should bea crude estimate of the extent of rounding effects by arguing

well described by their RPA counterparts, we adopt the fo"that fluctuations should only be relevant th%(h)

lowing procedure: determine the density profiles of the two_Wno b’(h)|sk T, where W2%(h) denotes the branch of
small species around a single big particle by minimizing the\NB,iBh) whereBtr,mere s a fluid bridge andf%,""(h) the
tFI:PA grand. pOtfr}t'?: funct|o|nal, Eq,i‘?]) %Qf,léi(l)’ efmd ttrj]se branch without a fluid bridge. From this inequality we can
so?\?sntassoll\?epnut diroectBif:rg;re?a?irg)% ;,ljlrmti((:)ihs inréag)r Thg obtain the width,éh;, over which the transition dt; will be
. , . . 102 i .

resultingc'?(r) are then used in Ed27) to calculateggg(r) smeareq. We find thai/ -10_ fpr the state points cor

4 h 9C he SM ol hich should b egBBl responding to the SM potentials displayed in Figs. 6 and 7.
\a/\;']*'\"c ence, t_e meNnCtla—w ICh should be very co_set his measure of the rounding becomes smaller for solvent

ge (1) We find thatWgg (), for larger, is almost identi- ¢ points further removed from the bulk critical point. For
cal to the branch oWgg(r) obtained using the brute-force ;o o0 soiute particles we also expect the extent of the

DFT r_neth_od presented in Secs. Il and lll, for Wh'c_h the_re ISrounding to become smaller. At first sight our estimate of the
no fluid bridge. In other words, vgheon t_here is no fIU|d_ bndge,rounding may seem surprisingly small, bearing in mind that
"T]'.' ;orhr =bh.3h." Where.hF_h‘(pl'pZ) |i(;che~s\(z§)aratlondat the size ratio between the big solute and small solvent par-
whie t.ef ”thgltntgh traHn,\Tglon oceur ?.B (r)—~ gs.(r) ﬁf‘d ticles is only about 7:1. However, due to the soft-core nature
\|/_|ve canin ?r hih N fi dw,&gx'ma |dngB(r3% 'S tV?I "~ of the GCM fluid, the solvent density is high and the number
Woweve_r, er i tt\get ;ﬂ bB'g (I‘)fIS fo_% eren _trtorg of particles involved in the bridging transition can be large.
f BB(r)r’].m |ca| Ing tha i " ge uncllczszr(]r),Tﬁml e This demonstrates one of the important differences between
rom this analysis, must be substantia DE-Ny. TNUS WE e soft-core GCM and more typical hard-core fluid systems.
have dgmonstrateo! thgg(r) must play a S|g.n|f|c.ant' role in For hard-core particles one would not find thick adsorbed
detevrvmmlng ;[hg flur:d strr]ucture WhEnNgire |s_br|d|glng;1 films of the solvent were the size ratio between the solute
© conclude that the ternary unctional, E_ﬁ-)- nd solvent only 7:1. Typically, the solute must be of order
describes correctly the bulk solvent-solvent correlations an 0 or more times larger than the solvent particles for wetting

c_apture_s Rl fl_Im_formatlon in the sol_ute—solveljt Correla'phenomena to become significant—see also the discussion in
tions with a vanishing solute-solvent bridge functiduy(r)

=0. For the solute-solute correlations the HNC assumption Our analysis in Sec. VI demonstrates that in order to

bB.B(r)zo re_mail_ws accurate when bridging i_S not present bufncorporate bridging into a fuliternary mixture theory, one
this approximation fails completely when bridging is present.,, o implement an accurate theory for the fluid bridge func-

This means that a more sophisticated theory for the ternary, s in particular, for the solute-solvent and solute-solute
functional , shoul,(lj include  terms_ proportional 10 406 functionsbg(r) and bgg(r). beg(r), the solute-solute

pa(r) Api(r') Ap;(r") and higher orders. These will become iqae function, remains little understood but must play a

important near the onset of the transition. crucial role when there are thick adsorbed films surrounding

the big particles. That the bridge functions are required high-

VII. DISCUSSION AND CONCLUSIONS Iigh_ts the essential many-body nature of the eff_ec_tive inter-

action between the big solute particles. Hence, it is not sur-

Using brute-force DFT we have calculated the SM po-prising that the insertion method combined with the ternary
tential Wgg(h) between a pair of big GCM particles in a version of the RPA functionalll) is unable to incorporate

binary solvent of smaller GCM patrticles. In particular, we the effects of bridging on the SM potential. We reiterate that

If one now employs the mixture OZ equations in the limit
pg— 0 one obtains

Note that the right-hand side of E§27) depends on the
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the insertion method is formally exact; it is its use with anbe quite good. The simple form, E¢l7), taken with Eq.
approximate functional which leads to neglect of the key(18), is surprisingly reliable in determining an approximation
features of bridging. In order to obtain insight as to what isfor h,, the separation between the big particles at which
required in a theory for the full mixture Helmholtz free en- bridging occurs, as well as providing a reasonable approxi-
ergy functional which incorporates the effect of bridging, wemation for the slope ofVgg(h) near the onset of the bridged
consider the exact inhomogeneous  Kirkwood-Hill configuration, i.e., it provides quite a good approximation for

9,36 . . . . .
formula™™ (recall Eq.(9)), the SM force ath~ h,. The capillarity approximation is not
2 reliable for smallh. Here the shape of the SM potential de-
Pry=- d)\f dr’p,(r")ge,(r,r';\)Bug,(|r = r')), termined from the capillarity approximation is completely
=170

wrong, and therefore the SM force obtained from this ap-
(29) proximation will be completely unreliable—see Figs. 6 and
. . ) ] 7. The brute-force calculation shows thattas: 0, the SM
for the one-body direct correlation function of the big solute¢q o .0, whereas the capillarity approximation shows the

particles in the limitps—0. vg,(r) are the big-small pair gy oyce tending to a nonzero constant valuehas0. We
potentials and the parametsf with 0= <1, is used 10 believe the origin of this failure lies in our simple approxi-

_turn on” the effect of the inserted big particle via the pOten'mation(18) for the area of the fluid-fluid interface.
tial Avg,(r). One calculates the solvent response through the . . :
One issue we have not raised so far is what does one

inhomogeneous  big-small - pair_distribution _function take forvgg(r), the bare big-big pair potential? This does not

Og,(r,r’;N), as\ is increased from O to 1. Combining Eg. . . . .
(29 with Eq. (13 one obtains an exact expression for €Nter our calculation of the SM potential, since in the latter it

Wig(r), given by Eq.(70) of Ref. 9. Consider the case when is onI_vaV(r_), the big-small pair potentials, that gre involved;
the solvent is near coexistence at a state point below th_@e t_)lg _partlcles are treated as external potentials. Thgrefore,
single big particle thin-thick adsorbed film transition line. If in Principle,vgg(r) could take any form, although choosing a
one calculate8Vgg(h) via Eq.(29), thengg,(r,r’;A=0) will bare potential with a hard core would be inconsistent with
correspond to the distribution arising from a fixed single bigthe soft-core nature ofg,(r). A Gaussian potential of the
particle located at =—h/2 exerting an external potential on form given in Eq.(1) would seem a natural choice fogg(r).

the solvent. This big particle will be surrounded by a thick When one considers the GCM to be a simple model for poly-
adsorbed film. Then, turning on the effect of the second bigners in solution, then the following empirical rules for the
particle (by increasing\ from zerg located atr=+h/2 one  pair potential parameters apply between unlike
could perhaps envisage the situation where there might bepecies™**'**°R?, =(RE+R%)/2 and €< &; = ¢;. There-
two “jumps” in gg,(r,r’;\) for a particular value oh=|h|.  fore, the choicedRgg/R;;=7 and egg=2ksT would be con-
The first would be ah=X\;, when the potentiak,vg,(r) be-  sistent with the parameters we have used for the big-small
comes sufficiently strong to induce condensation of the copair potential?. If we employ a bare Gaussian potential with
existing solvent phase around this second big particle. Thishese parameters the big-big repulsion is negligible when
jump in gg,(r,r’;\) could then be followed by a second compared to the attractivéVgg(r), particularly when there
jump atA=\, (A\;<<A,<1), when a fluid bridge forms be- gre thick adsorbed wetting films present around the big par-
tween the two big particles. That such complex phenomengg|es. Thus, the resulting effective pair potentiagg(r),
must be described h;él)(r), which is obtained by taking one given by Eq.(4) can be very strongly attractive.

funct!onal derivative of the excess HeImhoItz.frge eNergy it one were seeking to investigate experimentally the
fuqcﬂonal Eq.(9), attest to the degree of SOp.hISt.ICé.\tlon '€ effects of thick adsorbed films and bridging between colloi-
gwred in the tgrngry mixture fungtlonérei{pi}] if this s to . dal particles, one approach is to perform light scattering ex-
incorporate bridging. By employing the RPA functional in eriments in order to measure the second virial coefficient,

the insertion approach one incorporates the effect of the thick 37 . . . o
film surrounding the first big particle vig,(r) in Eq. (29), EZ' As pointed OUte'fr: Ref. 9B,, which measures the inte

2 - -
but neglects the effect of the thick film around the second biiral ?f B r(]ex;{ dﬁvBE(r()j]f_ll) should be tviry Ie_x(rjgeh and ;
particle by settingyg,(r,r';\)=1 for all ».° Thereby one is egative when adsorbed {lims are present. A rapid change to

unable to incorporate the effect of bridging on the SM po-a/9€ negative values @, upon changing the solvent state
tential. This point is highlighted further by the case describe®int should indicate the development of thick adsorbed
in Sec. V, where a single big particle has no thick adsorbed!ms grgund the colloids, thereby influencing the SM
film and the bridging arises from condensation around a paiPotential- WhetherB, does show a rapid variation with com-
of big particles. In this situation all the information about position in the neighborhood of the thin-thick transition lines
bridging/wetting must be generated dﬁ)(r) from a source remains to be ascertained.
other than the solvent density profiles around a single big Finally we note that since a pair of big particles with
particle, i.e., from subtle correlations in the inhomogeneous 0 exhibits a thin-thick adsorbed film transition line, at total
solvent. Incorporating such correlations is a tall order for adensities higher than the single particle thin-thick adsorbed
theory. transition line(see Fig. 1, there should also be a thin-thick
The simple capillarity (or sharp-kink approximation adsorbed film transition line at even higher densities for three
used in Sec. IV to provide an approximate theory for whenbig particles whose centers coincide. This will have implica-
bridging occurs between two thick adsorbed films seems ttions for the three-body interactions between the big par-
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ticles. Furthermore, there may be other transition lines cor; erson(Dekker, New York, 199p Chap. 3.

responding to four, five, or more big particles completely

overlapping.
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