2 research outputs found

    PEARLS: A Potentially Isolated Quiescent Dwarf Galaxy with a TRGB Distance of 31 Mpc

    Full text link
    A wealth of observations have long suggested that the vast majority of isolated classical dwarf galaxies (M∗=107M_*=10^7-10910^9 M⊙_\odot) are currently star-forming. However, recent observations of the large abundance of "Ultra-Diffuse Galaxies" beyond the reach of previous large spectroscopic surveys suggest that our understanding of the dwarf galaxy population may be incomplete. Here we report the serendipitous discovery of an isolated quiescent dwarf galaxy in the nearby Universe, which was imaged as part of the PEARLS GTO program. Remarkably, individual red-giant branch stars are visible in this near-IR imaging, suggesting a distance of 3131 Mpc, and a wealth of archival photometry point to an sSFR of 2×10−122\times10^{-12} yr−1^{-1}. Spectra obtained with the Lowell Discovery Telescope find a recessional velocity consistent with the Hubble Flow and >1500{>}1500 km/s separated from the nearest massive galaxy in SDSS, suggesting that this galaxy was either quenched from internal mechanisms or had a very high-velocity interaction with a nearby massive galaxy in the past. This analysis highlights the possibility that many nearby quiescent dwarf galaxies are waiting to be discovered and that JWST has the potential to identify them.Comment: Submitted to ApJ Letters. Comments welcome

    PEARLS: A potentially isolated quiescent dwarf galaxy with a tip of the red giant branch distance of 30 Mpc

    Get PDF
    A wealth of observations have long suggested that the vast majority of isolated classical dwarf galaxies (M* = 107–109M⊙) are currently star forming. However, recent observations of the large abundance of "ultra-diffuse galaxies" beyond the reach of previous large spectroscopic surveys suggest that our understanding of the dwarf galaxy population may be incomplete. Here we report the serendipitous discovery of an isolated quiescent dwarf galaxy in the nearby Universe, which was imaged as part of the JWST PEARLS Guaranteed Time Observation program. Remarkably, individual red-giant branch stars are visible in this near-IR imaging, suggesting a distance of 30 ± 4 Mpc, and a wealth of archival photometry point to an sSFR of 2 × 10−11 yr−1 and star formation rate of 4 × 10−4M⊙ yr−1. Spectra obtained with the Lowell Discovery Telescope find a recessional velocity consistent with the Hubble Flow and >1500 km s−1 separated from the nearest massive galaxy in Sloan Digital Sky Survey suggesting that this galaxy was either quenched from internal mechanisms or had a very high-velocity (≳1000 km s−1) interaction with a nearby massive galaxy in the past. This analysis highlights the possibility that many nearby quiescent dwarf galaxies are waiting to be discovered and that JWST has the potential to resolve them.T.M.C. is grateful for support from the Beus Center for Cosmic Foundations. R.A.W., S.H.C., and R.A.J. acknowledge support from NASA JWST Interdisciplinary Scientist grants NAG5-12460, NNX14AN10G and 80NSSC18K0200 from GSFC. J.M.D. acknowledges the support of project PGC2018-101814-B-100 (MCIU/AEI/MINECO/FEDER, UE) Ministerio de Ciencia, Investigación y Universidades. This project was funded by the Agencia Estatal de Investigación, Unidad de Excelencia María de Maeztu, ref. MDM-2017-0765. C.C. is supported by the National Natural Science Foundation of China, Nos. 11803044, 11933003, 12173045. This work is sponsored (in part) by the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA). We acknowledge the science research grants from the China Manned Space Project with No. CMS-CSST-2021-A05. R.A.B. gratefully acknowledges support from the European Space Agency (ESA) Research Fellowship. C.J.C. acknowledges support from the European Research Council (ERC) Advanced Investigator Grant EPOCHS (788113). C.N.A.W. acknowledges funding from the JWST/NIRCam contract NASS-0215 to the University of Arizona. M.A.M. acknowledges the support of a National Research Council of Canada Plaskett Fellowship, and the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE17010001.Peer reviewe
    corecore