485 research outputs found

    Reduction of multidrug-resistant (Mdr) bacterial infections during the covid-19 pandemic: a retrospective study

    Get PDF
    Multidrug-resistant (MDR) organisms are emerging as some of the main healthcare prob-lems worldwide. During the COVID-19 pandemic, several Infection Prevention and Control (IPC) measures have been adopted to reduce nosocomial microorganism transmission. We performed a case–control study to identify if the incidence of MDR bacterial infections while using pandemic-related preventive measures is lower than in previous years. From 2017 to 2020, we monitored hospital discharges over a four-month period (P #) (1 March to 30 June) in St. Andrea Hospital, Rome. In total, we reported 1617 discharges. Pearson’s chi-squared test was used to identify significant differences. A value of p ≤ 0.05 was considered statistically significant. A significant reduction in the incidence of total MDR bacterial infections was observed during the pandemic compared to in prepandemic years (p < 0.05). We also found a significantly higher incidence of MDR bacterial infections in COVID-19 departments compared with other medical departments (29% and 19%, respectively), with extended-spectrum β-lactamase Klebsiella pneumoniae as the pathogens presenting the highest increase. This study demonstrates that maintaining a high level of preventive measures could help tackle an important health problem such as that of the spread of MDR bacteria

    Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide

    Full text link
    A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β\beta-factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43±0.04%\beta = 98.43 \pm 0.04\% for a quantum dot coupled to a photonic-crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5\eta = 62.7 \pm 1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β\beta-factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic-crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction

    Single-photon nonlinear optics with a quantum dot in a waveguide

    Get PDF
    Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures

    Características e controle da podridão "olho de boi" nas maçãs do sul do Brasil.

    Get PDF
    bitstream/item/55164/1/cir066.pd

    Different waters for different performances: Can we imagine sport-related natural mineral spring waters?

    Get PDF
    Preserving the hydration status means to balance daily fluids and salt losses with gains, where the losses depend on several physiological and environmental factors. Especially for athletes, these losses could be relevant and negatively influence the performance: therefore, their hydro-saline status must be preserved with personalized pre-and rehydration plans all along the performance period. Scientific literature in this field is mainly dedicated to artificial sport drinks. Different territories in most world areas are rich in drinking natural mineral spring waters with saline compositions that reflect their geological origin and that are used for human health (often under medical prescription). However, scarce scientific attention has been dedicated to the use of these waters for athletes. We therefore reviewed the existing literature from the innovative viewpoint of matching spring water mineral compositions with different athletic performances and their hydro-saline requirements

    Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae-Producing KPC-31, a D179Y Variant of KPC-3

    Get PDF
    A 68-year-old man had recurrent bacteremia by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae resistant to ceftazidime-avibactam and cefiderocol. The sequencing of a target region showed that it harbored a KPC-3 variant enzyme (D179Y; KPC-31), which confers resistance to ceftazidime-avibactam and restores meropenem susceptibility. The patient was successfully treated with meropenem-vaborbactam
    • …
    corecore