6 research outputs found

    Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever.

    Get PDF
    Before 1989, dengue epidemiology in Sri Lanka was characterized by frequent transmission of all four dengue serotypes but a low incidence of dengue hemorrhagic fever (DHF). After 1989, cases of DHF dramatically increased. Here we present the results of epidemiologic studies conducted in Colombo, Sri Lanka before and after epidemic emergence of DHF in 1989. We compared the proportion of dengue cases among people with fever attending clinics from 1980 to 1984 and in 1997 and 1998 to determine if an increase in dengue transmission was associated with more DHF cases being reported. We also compared the relative distribution of dengue virus serotypes circulating in Colombo before and after the emergence of DHF. We detected no significant differences in dengue as a proportion of fever cases or in serotype distribution between the pre and post-DHF periods. We conclude that an increase in virus transmission or a change in circulating serotypes does not explain the epidemic emergence of DHF in Sri Lanka

    Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever.

    No full text
    Abstract. Before 1989, dengue epidemiology in Sri Lanka was characterized by frequent transmission of all four dengue serotypes but a low incidence of dengue hemorrhagic fever (DHF). After 1989, cases of DHF dramatically increased. Here we present the results of epidemiologic studies conducted in Colombo, Sri Lanka before and after epidemic emergence of DHF in 1989. We compared the proportion of dengue cases among people with fever attendin

    Not Available

    No full text
    Not AvailablePlant-microbe interactions can be either beneficial or harmful depending on the nature of the interaction. Multifaceted benefits of plant-associated microbes in crops are well documented. Specifically, the management of plant diseases using beneficial microbes is considered to be eco-friendly and the best alternative for sustainable agriculture. Diseases caused by various phytopathogens are responsible for a significant reduction in crop yield and cause substantial economic losses globally. In an ecosystem, there is always an equally daunting challenge for the establishment of disease and development of resistance by pathogens and plants, respectively. In particular, comprehending the complete view of the complex biological systems of plant-pathogen interactions, co-evolution and plant growth promotions (PGP) at both genetic and molecular levels requires novel approaches to decipher the function of genes involved in their interaction. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein 9) is a fast, emerging, precise, ecofriendly and efficient tool to address the challenges in agriculture and decipher plant-microbe interaction in crops. Nowadays, the CRISPR/Cas9 approach is receiving major attention in the field of functional genomics and crop improvement. Consequently, the present review updates the prevailing knowledge in the deployment of CRISPR/Cas9 techniques to understand plant-microbe interactions, genes edited for the development of fungal, bacterial and viral disease resistance, to elucidate the nodulation processes, plant growth promotion, and future implications in agriculture. Further, CRISPR/Cas9 would be a new tool for the management of plant diseases and increasing productivity for climate resilience farming.Not Availabl
    corecore