68 research outputs found

    Colorful Associahedra and Cyclohedra

    Full text link
    Every n-edge colored n-regular graph G naturally gives rise to a simple abstract n-polytope, the colorful polytope of G, whose 1-skeleton is isomorphic to G. The paper describes colorful polytope versions of the associahedron and cyclohedron. Like their classical counterparts, the colorful associahedron and cyclohedron encode triangulations and flips, but now with the added feature that the diagonals of the triangulations are colored and adjacency of triangulations requires color preserving flips. The colorful associahedron and cyclohedron are derived as colorful polytopes from the edge colored graph whose vertices represent these triangulations and whose colors on edges represent the colors of flipped diagonals.Comment: 21 pp, to appear in Journal Combinatorial Theory

    A family of mixed graphs with large order and diameter 2

    Get PDF
    A mixed regular graph is a connected simple graph in which each vertex has both a fixed outdegree (the same indegree) and a fixed undirected degree. A mixed regular graphs is said to be optimal if there is not a mixed regular graph with the same parameters and bigger order. We present a construction that provides mixed graphs of undirected degree qq, directed degree View the MathML sourceq-12 and order 2q22q2, for qq being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to View the MathML source9q2-4q+34 the defect of these mixed graphs is View the MathML source(q-22)2-14. In particular we obtain a known mixed Moore graph of order 1818, undirected degree 33 and directed degree 11 called Bosák’s graph and a new mixed graph of order 5050, undirected degree 55 and directed degree 22, which is proved to be optimal.Peer ReviewedPostprint (author's final draft
    corecore