13 research outputs found

    A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components

    Get PDF
    Background: Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. Methods: A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. Results: We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. Conclusions: The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention

    The IntAct molecular interaction database in 2012

    Get PDF
    IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intac

    The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases

    Get PDF
    IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org

    The catalytic domain limits the translocation of protein kinase C alpha in response to increases in Ca2+ and diacylglycerol.

    No full text
    Translocation of protein kinase C (PKC) alpha, beta II, delta and epsilon fused to enhanced green fluorescent protein (EGFP) was studied in living neuroblastoma cells by confocal microscopy. Exposure to carbachol elicited transient translocation of PKC alpha-EGFP and beta II-EGFP in most of the cells, PKC delta-EGFP in a few cells and induced sustained translocation of PKC epsilon-EGFP. To monitor levels of Ca(2+) and diacylglycerol and the translocation of PKC in the same cell, the Ca(2+)-sensitive C2 domain, diacylglycerol-sensitive C1 domains and full-length PKC were fused to red, cyan and yellow fluorescent proteins respectively. PKC alpha was translocated a few seconds after the C2 domain, which represents an increase in Ca(2+). This delay was insensitive to removal of the pseudosubstrate in PKC alpha, but the isolated regulatory domain translocated simultaneously with the C2 domain. Translocation of PKC epsilon coincided with the increase in diacylglycerol. Ionomycin induced translocation of PKC alpha and the C2 domain, whereas 1,2-dioctanoylglycerol caused translocation of the C1 domains and PKC epsilon, but not PKC alpha. Experiments with individual C1 domains showed that treatment with carbachol or phorbol 12,13-dibutyrate elicited translocation of PKC alpha C1a, PKC epsilon C1a and PKC epsilon C1b, whereas PKC alpha C1b was largely insensitive to these agents. In contrast with full-length PKC alpha, the regulatory domain of PKC alpha and pseudosubstrate-devoid PKC alpha responded to the carbachol-stimulated increase in diacylglycerol

    Autophosphorylation suppresses, whereas kinase inhibition augments, the translocation of PKCa in response to diacylglycerol.

    No full text
    We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the nonphosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation

    Protein interaction data curation: the International Molecular Exchange (IMEx) consortium.

    Get PDF
    The International Molecular Exchange (IMEx) consortium is an international collaboration between major public interaction data providers to share literature-curation efforts and make a nonredundant set of protein interactions available in a single search interface on a common website (http://www.imexconsortium.org/). Common curation rules have been developed, and a central registry is used to manage the selection of articles to enter into the dataset. We discuss the advantages of such a service to the user, our quality-control measures and our data-distribution practices
    corecore