7 research outputs found

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)

    Fast, High-Throughput Creation of Size-Tunable Micro/Nanoparticle Clusters via Evaporative Self-Assembly in Picoliter-Scale Droplets of Particle Suspension

    No full text
    We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing. The evaporating behavior of the droplet is observed in real-time, and the clustering characteristics of the particles are understood based on the physics of evaporative-assembly. With this method, multiplex printing of various particle clusters with accurate positioning and alignment are demonstrated. Also, size-unifomity of the cluster arrays is thoroughly analyzed by examining the metallic nanoparticle cluster-arrays based on surface-enhanced Raman spectroscopy (SERS)
    corecore