5 research outputs found

    Detection of electrical spin injection by light-emitting diodes in top- and side-emission configuration

    Full text link
    Detection of the degree of circular polarization of the electroluminescence of a light-emitting diode fitted with a spin injecting contact (a spin-LED) allows for a direct determination of the spin polarization of the injected carriers. Here, we compare the detection efficiency of (Al,Ga)As spin-LEDs fitted with a (Zn,Be,Mn)Se spin injector in top- and side-emission configuration. In contrast with top emission, we cannot detect the electrical spin injection in side emission from analysing the degree of circular polarization of the electroluminescence. To reduce resonant optical pumping of quantum-well excitons in the side emission, we have analysed structures with mesa sizes as small as 1 micron.Comment: 15 pages with 3 figure

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Spectral Properties of the Chalker-Coddington Network

    Full text link
    We numerically investigate the spectral statistics of pseudo-energies for the unitary network operator U of the Chalker--Coddington network. The shape of the level spacing distribution as well the scaling of its moments is compared to known results for quantum Hall systems. We also discuss the influence of multifractality on the tail of the spacing distribution.Comment: JPSJ-style, 7 pages, 4 Postscript figures, to be published in J. Phys. Soc. Jp
    corecore