24 research outputs found

    Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    Full text link
    Aims. To explore the possible chemical signature of planet formation in the binary system HAT-P-4, by studying abundance vs condensation temperature Tc trends. The star HAT-P-4 hosts a planet detected by transits while its stellar companion does not have any detected planet. We also study the Lithium content, which could shed light on the problem of Li depletion in exoplanet host stars. Conclusions. The exoplanet host star HAT-P-4 is found to be ~0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies, disentangling groups of stars with a common origin. We rule out a possible peculiar composition for each star as lambda Boo, delta Scuti or a Blue Straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Lithium abundance in HAT-P-4 is greater than in its companion by ~0.3 dex, which is contrary to the model that explains the Lithium depletion by the presence of planets. We propose a scenario where, at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly due to the migration of the giant planet. This explains the higher metallicity, the higher Lithium content, and the negative Tc trend detected. A similar scenario was recently proposed for the solar twin star HIP 68468, which is in some aspects similar to HAT-P-4. We estimate a mass of at least Mrock ~ 10 Mearth locked in refractory material in order to reproduce the observed Tc trends and metallicity.Comment: 5 pages, 6 figures, A&A Letters accepte

    High-precision analysis of binary stars with planets. I. Searching for condensation temperature trends in the HD 106515 system

    Full text link
    We explore the probable chemical signature of planet formation in the remarkable binary system HD 106515. The A star hosts a massive long-period planet with 9 MJup detected by radial velocity. We also refine stellar and planetary parameters by using non-solar-scaled opacities when modeling the stars. Methods. We carried out a simultaneous determination of stellar parameters and abundances, by applying for the first time non-solar-scaled opacities in this binary system, in order to reach the highest possible precision. Results. The stars A and B in the binary system HD 106515 do not seem to be depleted in refractory elements, which is different when comparing the Sun with solar-twins. Then, the terrestrial planet formation would have been less efficient in the stars of this binary system. Together with HD 80606/7, this is the second binary system which does not seem to present a (terrestrial) signature of planet formation, and hosting both systems an eccentric giant planet. This is in agreement with numerical simulations, where the early dynamical evolution of eccentric giant planets clear out most of the possible terrestrial planets in the inner zone. We refined the stellar mass, radius and age for both stars and found a notable difference of 78% in R compared to previous works. We also refined the planet mass to mp sini = 9.08 +/- 0.20 MJup, which differs by 6% compared with literature. In addition, we showed that the non-solar-scaled solution is not compatible with the classical solar-scaled method, and some abundance differences are comparable to NLTE or GCE effects specially when using the Sun as reference. Then, we encourage the use of non-solar-scaled opacities in high-precision studies such as the detection of Tc trends.[abridged]Comment: 9 pages, 10 figures, A&A accepted. arXiv admin note: text overlap with arXiv:1507.0812

    KELT-17: a chemically peculiar Am star and a hot-Jupiter planet

    Full text link
    Context. The detection of planets orbiting chemically peculiar stars is very scarcely known in the literature. Aims. To determine the detailed chemical composition of the remarkable planet host star KELT-17. This object hosts a hot-Jupiter planet with 1.31 MJup detected by transits, being one of the more massive and rapidly rotating planet hosts to date. We aimed to derive a complete chemical pattern for this star, in order to compare it with those of chemically peculiar stars. Methods. We carried out a detailed abundance determination in the planet host star KELT-17 via spectral synthesis. Stellar parameters were estimated iteratively by fitting Balmer line profiles and imposing the Fe ionization balance, using the program SYNTHE together with plane-parallel ATLAS12 model atmospheres. Specific opacities for an arbitrary composition and microturbulence velocity vmicro were calculated through the Opacity Sampling (OS) method. The abundances were determined iteratively by fitting synthetic spectra to metallic lines of 16 different chemical species using the program SYNTHE. The complete chemical pattern of KELT-17 was compared to the recently published average pattern of Am stars. We estimated the stellar radius by two methods: a) comparing the synthetic spectral energy distribution with the available photometric data and the Gaia parallax, and b) using a Bayesian estimation of stellar parameters using stellar isochrones. Results. We found overabundances of Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, Zr, and Ba, together with subsolar values of Ca and Sc. Notably, the chemical pattern agrees with those recently published of Am stars, being then KELT-17 the first exoplanet host whose complete chemical pattern is unambiguously identified with this class. The stellar radius derived by two different methods agrees to each other and with those previously obtained in the literature.Comment: 5 pages, 8 figures, 2 tables, A&A accepte

    ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    Get PDF
    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ?10 yr, similar to the solar one (?11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ?0.220 dex difference between the average log (R^´ }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.Fil: Flores, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Saffe, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Buccino, Andrea Paola. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Jaque Arancibia, Marcelo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: González, J F. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Nuñez, N E. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Jofré, E. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentin

    Elemental abundances differences in the massive planet-hosting wide binary HD 196067-68

    Full text link
    It has been suggested that small chemical anomalies observed in planet-hosting wide binary systems could be due to planet signatures, where the role of the planetary mass is still unknown. We search for a possible planet signature by analyzing the Tc trends in the remarkable binary system HD196067-HD196068. At the moment, only HD196067 is known to host a planet which is near the brown dwarf regime. We take advantage of the strong physical similarity between both stars, which is crucial to achieving the highest possible precision in stellar parameters and elemental chemical abundances. This system gives us a unique opportunity to explore if a possible depletion of refractories in a binary system could be inhibited by the presence of a massive planet. We performed a line-by-line chemical differential study, employing the non-solar-scaled opacities, in order to reach the highest precision in the calculations. After differentially comparing both stars, HD196067 displays a clear deficiency in refractory elements in the Tc plane, a lower iron content (0.051 dex) and also a lower Li I content (0.14 dex) than its companion. In addition, the differential abundances reveal a Tc trend. These targets represent the first cases of an abundance difference around a binary system hosting a super-Jupiter. Although we explored several scenarios to explain the chemical anomalies, none of them can be entirely ruled out. Additional monitoring of the system as well as studies of larger sample of wide binary systems hosting massive planets, are needed to better understand the chemical abundance trend observed in HD196067-68.Comment: 9 pages, six figures, three table

    Elemental abundances differences in the massive planet-hosting wide binary HD 196067-68

    Get PDF
    It has been suggested that small chemical anomalies observed in planet-hosting wide binary systems could be due to planet signatures, where the role of the planetary mass is still unknown. We search for a possible planet signature by analyzing the TC trends in the remarkable binary system HD 196067–HD 196068. At the moment, only HD 196067 is known to host a planet which is near the brown dwarf regime. We take advantage of the strong physical similarity between both stars, which is crucial to achieving the highest possible precision in stellar parameters and elemental chemical abundances. This system gives us a unique opportunity to explore if a possible depletion of refractories in a binary system could be inhibited by the presence of a massive planet. We performed a line-by-line chemical differential study, employing the non-solar-scaled opacities, in order to reach the highest precision in the calculations. After differentially comparing both stars, HD 196067 displays a clear deficiency in refractory elements in the TC plane, a lower iron content (0.051 dex) and also a lower Li i content (0.14 dex) than its companion. In addition, the differential abundances reveal a TC trend. These targets represent the first cases of an abundance difference around a binary system hosting a super-Jupiter. Although we explored several scenarios to explain the chemical anomalies, none of them can be entirely ruled out. Additional monitoring of the system as well as studies of larger sample of wide binary systems hosting massive planets, are needed to better understand the chemical abundance trend observed in HD 196067-68.Fil: Flores, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Galarza, J. Yana. Carnegie Observatories; Estados UnidosFil: Miquelarena Hollger, Paula Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Saffe, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Arancibia, M. Jaque. Universidad de La Serena; ChileFil: Ibañez Bustos, Romina Valeria. Observatoire de la Cote D'Azur; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jofre, Jorge Emiliano. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Alacoria, José Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Gunella Toledo, Jose Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    X-ray, UV, and optical observations of the accretion disk and boundary layer in the symbiotic star RT Crucis

    Get PDF
    Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly observable, however, when there is no quasi-steady shell burning on the WD to hide them. RT Cru is the prototype of such non-burning symbiotics, with its hard (δ-type) X-ray emission providing a view of its innermost accretion structures. In the past 20 yr, RT Cru has experienced two similar optical brightening events, separated by ∼ 4000 days and with amplitudes of ΔV ∼ 1.5 mag. After Swift became operative, the Burst Alert Telescope (BAT) detector revealed a hard X-ray brightening event almost in coincidence with the second optical peak. Spectral and timing analyses of multi-wavelength observations that we describe here, from NuSTAR, Suzaku, Swift/X-Ray Telescope (XRT) + BAT + UltraViolet Optical Telescope (UVOT) (photometry) and optical photometry and spectroscopy, indicate that accretion proceeds through a disk that reaches down to the WD surface. The scenario in which a massive, magnetic WD accretes from a magnetically truncated accretion disk is not supported. For example, none of our data show the minute-time-scale periodic modulations (with tight upper limits from X-ray data) expected from a spinning, magnetic WD. Moreover, the similarity of the UV and X-ray fluxes, as well as the approximate constancy of the hardness ratio within the BAT band, indicate that the boundary layer of the accretion disk remained optically thin to its own radiation throughout the brightening event, during which the rate of accretion onto the WD increased to 6.7 × 10-9M· yr-1 (d/2 kpc)2. For the first time from a WD symbiotic, the NuSTAR spectrum showed a Compton reflection hump at E > 10 keV, due to hard X-rays from the boundary layer reflecting off of the surface of the WD; the reflection amplitude was 0.77 ± 0.21. The best fit spectral model, including reflection, gave a maximum post-shock temperature of kT = 53 ± 4 keV, which implies a WD mass of 1.25 ± 0.02 M·. Although the long-term optical variability in RT Cru is reminiscent of dwarf-novae-type outbursts, the hard X-ray behavior does not correspond to that observed in well-known dwarf nova. An alternative explanation for the brightening events could be that they are due to an enhancement of the accretion rate as the WD travels through the red giant wind in a wide orbit, with a period of about ∼4000 days. In either case, the constancy of the hard X-ray spectrum while the accretion rate rose suggests that the accretion-rate threshold between a mostly optically thin and thick boundary layer, in this object, may be higher than previously thought.Fil: Luna, Gerardo Juan Manuel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mukai, K.. National Aeronautics and Space Administration; Estados UnidosFil: Sokoloski, J. L.. Columbia University; Estados UnidosFil: Lucy, A. B.. Columbia University; Estados UnidosFil: Cusumano, G.. Istituto Nazionale di Astrofisica; ItaliaFil: Segreto, A.. Istituto Nazionale di Astrofisica; ItaliaFil: Jaque Arancibia, Marcelo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Nuñez, Natalia Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Puebla, R. E.. Universidad Central del Ecuador; EcuadorFil: Nelson, T.. University of Pittsburgh at Johnstown; Estados UnidosFil: Walter, F. M.. Columbia University; Estados Unido

    Evaluation et cartographie du risque d'incendie de foret dans le massif des Maures. Rapport final

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : GR 1467 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Discovery of an activity cycle in the solar analog HD 45184

    No full text
    Context. Most stellar activity cycles similar to that found in the Sun have been detected by using the chromospheric Ca i

    Testing the accretion scenario of lambda Boo stars

    Full text link
    Our aim is to test the accretion scenario of lambda Boo stars. This model predicts that a binary system with two early-type stars passing through a diffuse cloud should both display the same superficial peculiarity. We carried out a detailed abundance determination of three multiple systems hosting a candidate lambda Boo star: the remarkable triple system HD 15164/65/65C and the binary systems HD 193256/281 and HD 198160/161. The abundance analysis of HD 15164/65/65C shows a clear lambda Boo object (HD 15165) and two objects with near solar composition (HD 15164 and 15165C). Notably, the presence of a lambda Boo star (HD 15165) together with a near solar early-type object (HD 15164) is difficult to explain under the accretion scenario. Also, the solar-like composition derived for the late-type star of the system (HD 15165C) could be used, for the first time, as a proxy for the initial composition of the lambda Boo stars. Then, by reviewing abundance analysis of all known binary systems with candidate lambda Boo stars from literature and including the systems analyzed here, we find no binary/multiple system having two clear "bonafide" lambda Boo stars, as expected from the accretion scenario. The closer candidates to show two lambda Boo-like stars are HD 84948, HD 171948 and HD 198160; however, in our opinion they show mild rather than clear lambda Boo patterns. Our results brings little support to the accretion scenario. Then, there is an urgent need of additional binary and multiple systemsto be analyzed through a detailed abundance analysis.[abridged]Comment: A&A accepted, 14 pages, 9 Figures, 9 Table
    corecore