32 research outputs found
A magnetic field diagnostic for sonoluminescence
This study is motivated by the extraordinary process of single bubble
sonoluminescence (SBSL), where an acoustically driven spherical shock is
thought to power the emitted radiation. We propose new experiments using an
external magnetic field which can induce anisotropies in both the shock
propagation and radiation pattern. The effects will depend on the temperature,
conductivity, and size of the radiating region. Our predictions suggest that
such a laboratory experiment could serve as an important diagnostic in placing
bounds on these parameters and understanding the physics of sonoluminescence.Comment: Latex File, Two .eps files, 5 pages, submitted to PR
Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such 'false-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired