2 research outputs found

    Boundary form factors of the sinh-Gordon model with Dirichlet boundary conditions at the self-dual point

    Get PDF
    In this manuscript we present a detailed investigation of the form factors of boundary fields of the sinh-Gordon model with a particular type of Dirichlet boundary condition, corresponding to zero value of the sinh-Gordon field at the boundary, at the self-dual point. We follow for this the boundary form factor program recently proposed by Z. Bajnok, L. Palla and G. Takaks in hep-th/0603171, extending the analysis of the boundary sinh-Gordon model initiated there. The main result of the paper is a conjecture for the structure of all n-particle form factors of two particular boundary operators in terms of elementary symmetric polynomials in certain functions of the rapidity variables. In addition, form factors of boundary "descendant" fields have been constructedComment: 14 pages LaTex. Version to appear in J. Phys.

    Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories

    Get PDF
    This paper is a review of the main results obtained in a series of papers involving the present authors and their collaborator J L Cardy over the last 2 years. In our work, we have developed and applied a new approach for the computation of the bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories. In most of our work we have also considered these theories to be integrable. Our approach combines two main ingredients: the 'replica trick' and form factors for integrable models and more generally for massive quantum field theory. Our basic idea for combining fruitfully these two ingredients is that of the branch-point twist field. By the replica trick, we obtained an alternative way of expressing the entanglement entropy as a function of the correlation functions of branch-point twist fields. On the other hand, a generalization of the form factor program has allowed us to study, and in integrable cases to obtain exact expressions for, form factors of such twist fields. By the usual decomposition of correlation functions in an infinite series involving form factors, we obtained exact results for the infrared behaviours of the bi-partite entanglement entropy, and studied both its infrared and ultraviolet behaviours for different kinds of models: with and without boundaries and backscattering, at and out of integrability
    corecore