23 research outputs found

    Optical and acoustic characterization of freeze-thawed polyvinyl alcohol gels

    No full text
    Preclinical validation of non-invasive photoacoustic imaging of carotid artery atherosclerosis requires vessel phantoms that imitate optical, acoustic and mechanical properties of vascular tissue. Polyvinyl alcohol (PVA) phantoms that are widely used as ultrasound phantoms due to their elastic properties are also promising for photoacoustics. This study contributes to the field by quantifying the optical and acoustic properties of PVA gel, and aims at the characterization of realistic phantoms for future studies. In this study, we investigated the relation between acoustic scatterers and optical absorbers to quantify optical and acoustic properties of the PVA phantoms. Four different concentrations of orgasol acoustic scatterers, and varying concentration of Indian ink and molecular dye absorbers were added to a 15 wt% PVA solution. Samples were subjected to 1 to 5 freeze-thaw cycles and were examined after each cycle to quantify the effect on the optical and the acoustic properties. Optical attenuation was measured between 400 nm and 990 nm using a plate reader. Additionally, pulse-echo plane wave ultrasound was used for acoustic characterization. Changing the concentration of orgasol between 0.5 wt% and 4 wt% increased the mean optical attenuation of PVA by 35% after the first freeze thaw cycle. Likewise, each freeze-thaw cycle increased the optical attenuation due to scattering of light by the microstructure of PVA. The absorbance of pure PVA increased 40% between the first and second cycle and 3% between the fourth and fifth cycle. While the orgasol concentration and the freeze-thaw cycles altered the acoustic speed and attenuation, the ink and the dye inclusions did not significantly affect the acoustic properties of PVA

    Optical absorbance measurements and photoacoustic evaluation of freeze-thawed polyvinyl-alcohol vessel phantoms

    No full text
    Multispectral photoacoustic (MPA) imaging is a promising tool for the diagnosis of atherosclerotic carotids. Excitation of different constituents of a plaque with different wavelengths of the light may provide morphological information to evaluate plaque vulnerability. Preclinical validation of in vivo photoacoustic (PA) imaging requires a comprehensive phantom study. In this study, the design of optically realistic vessel phantoms for photoacoustics was examined by characterizing their optical properties for different dye concentrations, and comparing those to PA measurements. Four different concentrations of Indian ink and molecular dye were added to a 15 wt% PVA and 1 wt% orgasol mixture. Next, the homogeneously mixed gels were subjected to five freeze - thaw cycles to increase the stiffness of vessel phantoms (rinner = 2.5mm, router = 4mm). For each cycle, the optical absorbance was measured between 400 nm 990 nm using a plate reader. Additionally, photoacoustic responses of each vessel phantom at 808 nm were tested with a novel, hand-held, integrated PA probe. Measurements show that the PA signal intensity increases with the optical absorber concentration (0.3 to 0.9) in close agreement with the absorbance measurements. The freeze - thaw process has no significant effect on PA intensity. However, the total attenuation of optical energy increases after each freeze-thaw cycle, which is primarily due to the increase in the scattering coefficient. In future work, the complexity of these phantoms will be increased to examine the feasibility of distinguishing different constituents with MPA imaging

    The use of radial endosonography findings in the prediction of cholangiocarcinoma in cases with distal bile duct obstructions

    No full text
    Background/Aims: We retrospectively collected the data of radial endosonographic (EUS) imaging findings of the patients with the distal bile duct obstructions due to different benign and malignant conditions. We aimed to assess and analyze the EUS findings in the distal bile duct obstruction which can predict or detect the existence of cholangiocarcinoma originating from the distal bile duct wall. Methodology: We gathered the data of 192 cases with distal biliary stricture due to various causes which all were diagnosed. Results: With EUS, The sensitivity and specificity for diagnosis of cholangiocarcinoma in lesions were respectively as following: Firstly, small hypoechoic mass which interrupts to see lumen and choledoch wall with total occlusion at distal choledoch: 75.8%, 88.1%. Secondly, hypoechoic and irregular thickening than surrounding regions at distal choledoch wall: 68.1%, 87.3%. Thirdly, appearance of lumen prompt termination at distal choledoch: 57.1%, 87.6%. Lastly, appearance where lumen narrows short segment: 13.6%, 59.3%. Conclusions: EUS findings including hypoechoic mass appearance completely occluding the lumen or heterogeneously increased irregular wall-thickness in the distal bile duct were found to be highly predictive and sensitive for detecting malignancy originating from the distal bile duct. © H.G.E. Update Medical Publishing S.A

    Photoacoustic perfusion measurements: a comparison with Power Doppler in phantoms

    No full text
    Ultrasound-based measurements using Doppler, contrast, and more recently photoacoustics (PA), have emerged as techniques for tissue perfusion measurements. In this study, the feasibility of in vitro perfusion measurements with a fully integrated, hand-held, photoacoustic probe was investigated and compared to Power Doppler (PD). Three cylindrical polyvinyl alcohol (PVA) phantoms were made (diameter = 15 mm) containing 100, 200 and 400 parallel polysulfone tubes (diameter = 0.2 mm), resulting in a perfused cross-sectional area of 1.8, 3.6 and 7.1% respectively. Each phantom was perfused with porcine blood (15 mL/min). Cross-sectional PA images (λ = 805nm, frame rate = 10Hz) and PD images (PRF = 750Hz) were acquired with a MyLab One and MyLab 70 scanner (Esaote, NL), respectively. Data were averaged over 70 frames. The average PA signal intensity was calculated in a region-of-interest of 4 mm by 6 mm. The percentage of colored PD pixels was measured in the entire phantom region. The average signal intensity of the PA images increased linearly with perfusion density, being 0.54 (± 0.01), 0.56 (± 0.01), 0.58 (± 0.01) with an average background signal of 0.53 in the three phantoms, respectively. For PD, the percentage of colored pixels in the phantom area (1.5% (± 0.2%), 4.4% (± 0.2%), 13.7% (± 0.8%)) also increased linearly. The preliminary results suggest that PA, like PD, is capable of detecting an increase of blood volume in tissue. In the future, in vivo measurements will be explored, although validation will be more complex
    corecore