7 research outputs found

    Novel Semisynthetic Derivatives of Bile Acids as Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibitors.

    Get PDF
    An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme

    Intra-articular vs. systemic administration of etanercept in antigen-induced arthritis in the temporomandibular point. Part I: histological effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporomandibular joint (TMJ) arthritis in children causes alterations in craniomandibular growth. This abnormal growth may be prevented by an early anti-inflammatory intervention. We have previously shown that intra-articular (IA) corticosteroid reduces TMJ inflammation, but causes concurrent mandibular growth inhibition in young rabbits. Blockage of TNF-α has already proven its efficacy in children with juvenile idiopathic arthritis not responding to standard therapy. In this paper we evaluate the effect of IA etanercept compared to subcutaneous etanercept in antigen-induced TMJ-arthritis in rabbits on histological changes using histomorphometry and stereology. This article presents the data and discussion on the anti-inflammatory effects of systemic and IA etanercept. In Part II the data on the effects of systemic and IA etanercept on facial growth are presented.</p> <p>Methods</p> <p>Forty-two rabbits (10 weeks old) pre-sensitized with ovalbumin and locally induced inflammation in the temporomandibular joints were divided into three groups: a placebo group receiving IA saline injections in both joints one week after arthritis induction (n = 14), an IA etanercept group receiving 0.1 mg/kg etanercept per joint one week after arthritis induction (n = 14) and a systemic etanercept group receiving 0.8 mg/kg etanercept weekly throughout the 12-week study (n = 14). Arthritis was maintained by giving four inductions three weeks apart. Additional IA saline or etanercept injections were also given one week after the re-inductions. Histomorphometric and unbiased stereological methods (optical fractionator) were used to assess and estimate the inflammation in the joints.</p> <p>Results</p> <p>The histomorphometry showed synovial proliferation in all groups. The plasma cell count obtained by the optical fractionator was significantly reduced when treating with systemic etanercept but not with IA etanercept. Semi-quantitative assessments of synovial proliferation and subsynovial inflammation also showed reduced inflammation in the systemic etanercept group. However, the thickness of the synovial lining and volume of the subsynovial connective tissue showed no differences between the groups.</p> <p>Conclusion</p> <p>An anti-inflammatory effect of systemic etanercept on the synovial tissues in the temporomandibular joint was shown. However, IA etanercept at the given dose had no significant effect on the severity of chronic inflammation on the parameters here tested in ovalbumin antigen-induced arthritis.</p

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    Antioxidant properties and stability of aegle marmelos leaves extracts

    No full text
    Aegle marmelos (AM) leaves were extracted with methanol (ME), ethanol (EE), water (WE) and analyzed for antioxidant activities by DPPH radical scavenging method, reducing power and in vitro inhibition by Fenton's reagent-induced oxidation of lipid system. Stability of extracts to pH (4, 7 and 9) and temperature (100 °C, 15 min.) was studied. The three extracts showed varying degree of efficacy in each assay in a dose dependent manner. The inhibition of MDA formation in Linseed oil by EE (47%) was significantly (P\textless0.05) higher than WE (28%) and ME (23%) but less than α- Tocopherol (80%). WE showed maximum stability to high temperature. The antioxidant activity of EE at pH 4 was significantly higher (P\textless0.05) compared with WE and ME. At pH 7, the antioxidant activity of all the three extracts remained unchanged. Data indicates that potential exists for the utilization of Aegle marmelos as a natural antioxidant. © 2011 Association of Food Scientists & Technologists (India)
    corecore