112 research outputs found

    Extended Surface of Materials as a Result of Chemical Equilibrium

    Get PDF
    A system consisting of at least two components was considered. In this system, nanocrystalline material is formed at high temperature, at which diffusion does not limit the mass transport. The structure results from establishing an equilibrium between surface and volume of the crystallites and their surroundings in isothermal-adiabatic conditions. The surface of each crystallite is covered with another substance. On the basis of the performed energy-balance calculations it was concluded that the reduction in the surface area is associated with a decrease in the surface coverage degree and thus with the necessity to provide energy to the system in order to remove chemisorbed atoms. An increase in the temperature of a nanocrystalline substance to a temperature higher than the preparation temperature results in the formation of a new state of equilibrium. At temperatures below the maximum temperature only the equilibrium between the gas phase and the surface exists

    Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth

    Get PDF
    Boron nitride nanotubes (BNNTs) have many fascinating properties and a wide range of applications. An improved ball milling method has been developed for high-yield BNNT synthesis, in which metal nitrate, such as Fe(NO(3))(3), and amorphous boron powder are milled together to prepare a more effective precursor. The heating of the precursor in nitrogen-containing gas produces a high density of BNNTs with controlled structures. The chemical bonding and structure of the synthesized BNNTs are precisely probed by near-edge X-ray absorption fine structure spectroscopy. The higher efficiency of the precursor containing milling-activated catalyst is revealed by thermogravimetric analyses. Detailed X-ray diffraction and X-ray photoelectron spectroscopy investigations disclose that during ball milling the Fe(NO(3))(3) decomposes to Fe which greatly accelerates the nitriding reaction and therefore increases the yield of BNNTs. This improved synthesis method brings the large-scale production and application of BNNTs one step closer

    The activity of fused-iron catalyst doped with lithium oxide for ammonia synthesis

    No full text
    The iron catalyst precursor promoted with Al2O3, CaO, and Li2O was obtained applying the fusing method. Lithium oxide forms two phases in this iron catalyst: a chemical compound with iron oxide (Li2Fe3O4) and a solid solution with magnetite. The catalyst promoted with lithium oxide was not fully reduced at 773 K, while the catalyst containing potassium was easily reducible at the same conditions. After reduction at 873 K the activity of the catalyst promoted with lithium oxide was 41% higher per surface than the activity of the catalyst promoted with potassium oxide. The concentration of free active sites on the surface of the catalyst containing lithium oxide after full reduction was greater than the concentration of free active sites on the surface of the catalyst promoted with potassium oxide

    Reaction Model Taking into Account the Catalyst Morphology and Its Active Specific Surface in the Process of Catalytic Ammonia Decomposition

    No full text
    Iron catalysts for ammonia synthesis/nanocrystalline iron promoted with oxides of potassium, aluminum and calcium were characterized by studying the nitriding process with ammonia in kinetic area of the reaction at temperature of 475 °C. Using the equations proposed by Crank, it was found that the process rate is limited by diffusion through the interface, and the estimated value of the nitrogen diffusion coefficient through the boundary layer is 0.1 nm2/s. The reaction rate can be described by Fick’s first equation. It was confirmed that nanocrystallites undergo a phase transformation in their entire volume after reaching the critical concentration, depending on the active specific surface of the nanocrystallite. Nanocrystallites transform from the α-Fe(N) phase to γ’-Fe4N when the total chemical potential of nitrogen compensates for the transformation potential of the iron crystal lattice from α to γ; thus, the nanocrystallites are transformed from the smallest to the largest in reverse order to their active specific surface area. Based on the results of measurements of the nitriding rate obtained for the samples after overheating in hydrogen in the temperature range of 500–700 °C, the probabilities of the density of distributions of the specific active surfaces of iron nanocrystallites of the tested samples were determined. The determined distributions are bimodal and can be described by the sum of two Gaussian distribution functions, where the largest nanocrystallite does not change in the overheating process, and the size of the smallest nanocrystallites increases with increasing recrystallization temperature. Parallel to the nitriding reaction, catalytic decomposition of ammonia takes place in direct proportion to the active surface of the iron nanocrystallite. Based on the ratio of the active iron surface to the specific surface, the degree of coverage of the catalyst surface with the promoters was determined

    Application of TOF-SIMS Method in the Study of Wetting the Iron (111) Surface with Promoter Oxides

    No full text
    In the present work, a simplified model of the Fe(111) surface’s promoter-oxide system was investigated in order to experimentally verify the previously proposed and known models concerning the structure and chemical composition of the surfaces of iron nanocrystallites in the ammonia-synthesis catalyst. It was shown that efficient oxygen diffusion from metal oxides to the clean Fe(111) iron surface took place even at temperatures lower than 100 °C. The effective wetting of the iron surface by potassium oxide is possible when the surface is covered with oxygen at temperatures above 250 °C. In the TOF-SIMS spectra of the surface of iron wetted with potassium, an emission of secondary FeOK+ ions was observed that implies that potassium atoms are bound to the iron surface atoms through oxygen. As a result of further wetting the iron surface with potassium ions, a heterogeneous surface structure was formed consisting of a thin K2O layer, next to which there was an iron-oxide phase covered with potassium ions. Only a limited increase in calcium concentration was observed on the Fe(111) iron surface upon sample annealing at up to 350 °C. As a result of wetting the iron surface with calcium ions, an oxide solution of CaO-FexOy was formed. In the annealing process of the sample containing alumina, only traces of this promoter diffusing to the iron surface were observed. Alumina formed a solution with a passive layer on the iron surface and under the process conditions (350 °C) it did not wet the pure iron (111) surface. The decrease in Fe+-ion emission from the Fe-Ca and Fe-Al samples at 350 °C implies a reduction in the oxygen concentration on the sample surface at this temperature

    Studies of the Ammonia Decomposition over a Mixture Of α - Fe(N) And γ' - Fe4n

    No full text
    An industrial pre-reduced iron catalyst for ammonia synthesis was nitrided in a differential reactor equipped with the systems that made it possible to conduct both the thermogravimetric measurements and hydrogen concentration analyser in the reacting gas mixture. The nitriding process, particularly the catalytic ammonia decomposition reaction, was investigated under an atmosphere of ammonia-hydrogen mixtures, under the atmospheric pressure, at 475oC. The nitriding potentials were changed gradually in the range from 19.10-3 to 73.10-3 Pa-0.5 in the reactor for an intermediate area where two phases exist simultanously: Fe(N) and γ’-Fe4. In the area wherein P > 73.10-3 Pa-0.5, approximately stoichiometric composition of γ’ - Fe4N phase exists and saturating of that phase by nitrogen started. The rate of the catalytic ammonia decomposition was calculated on the basis of grain volume distribution as a function of conversion degree for that catalyst. It was found that over γ’ - Fe4N phase in the stationary states the rate of catalytic ammonia decomposition depends linearly on the logarithm of the nitriding potential. The rate was decreasing along with increase in the nitriding potential. For the intermediate area, the rate of ammonia decomposition is a sum of the rates of reactions which occur on the surfaces of both Fe(N) and γ’ - Fe4N
    corecore