11,661 research outputs found

    A matter of time: Implicit acquisition of recursive sequence structures

    Get PDF
    A dominant hypothesis in empirical research on the evolution of language is the following: the fundamental difference between animal and human communication systems is captured by the distinction between regular and more complex non-regular grammars. Studies reporting successful artificial grammar learning of nested recursive structures and imaging studies of the same have methodological shortcomings since they typically allow explicit problem solving strategies and this has been shown to account for the learning effect in subsequent behavioral studies. The present study overcomes these shortcomings by using subtle violations of agreement structure in a preference classification task. In contrast to the studies conducted so far, we use an implicit learning paradigm, allowing the time needed for both abstraction processes and consolidation to take place. Our results demonstrate robust implicit learning of recursively embedded structures (context-free grammar) and recursive structures with cross-dependencies (context-sensitive grammar) in an artificial grammar learning task spanning 9 days. Keywords: Implicit artificial grammar learning; centre embedded; cross-dependency; implicit learning; context-sensitive grammar; context-free grammar; regular grammar; non-regular gramma

    Enhanced propagation of motile bacteria on surfaces due to forward scattering

    Get PDF
    How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats
    • …
    corecore