3 research outputs found

    Performance of Quercus suber L. at nursery stage - application of two bio-inoculants under two distinct environments

    Get PDF
    Key message - Despite the fact that the technique of application of bioinoculants improved the quality of Quercus suber L. seedlings produced in nurseries, these benefits are dependent on the ecological conditions of the site and the composition of the applied inoculum, which interferes with the profile of the local fungal community. Context - Quercus suber L. plays a key ecological and socio-economical role in the Iberian Peninsula. Symbiotic ectomycorrhizal fungi-ECM are crucial partners of several tree species, and assessing the efficacy of bioinoculants at nursery stage helps devising tools to increase plant resilience. Aims - The aim of this study was to compare the effects of two inocula formulations of mixed ECM fungi and bacteria on the quality of seedlings produced in two forest nurseries, differing in environmental conditions and forest embedment. Methods - Quercus suber L. seedlings were inoculated with a commercial product containing Pisolithus tinctorius (Pers) Coker Couch - Scleroderma sp., and six bacterial species and with a non-commercial fungal and bacterial dual inoculum (Suillus granulatus (L.) Roussel + Mesorhizobium sp.). Biometric and nutritional parameters and morphological quality indexes were determined on seedlings. The ECMcommunity was assessed by denaturing gradient gel electrophoresis and cloning-sequencing. Results - In both nurseries, the seedling quality index in inoculated was up to 2-fold higher than in non-inoculated seedlings. Plant biomass differed significantly among nurseries. The inoculum influenced the profile of the fungal community. S. granulatus and P. tinctorius persisted for 6 months in the inoculated seedlings. Conclusion- The nursery ecosystem influenced plant growth. Inoculation treatments increased plant performance; however, the dual inoculum resulted in more consistent improvements of Q. suber at nursery stage, highlighting the importance of inocula selection.info:eu-repo/semantics/publishedVersio

    The effect of fungal-bacterial interaction on the phenolic profile of Pinus pinea L

    No full text
    Studies on the functional significance of bacteria associated with ectomycorrhizal (ECM) fungi are scarce, as well as information on the metabolism of the host plant when in symbiosis with ECM fungi. Here we intended to evaluate the phenolic profile of seedlings when associated with Bacillus subtilis (B1), Pisolithus tinctorius (Pis) and their combination (PisB1). The interaction between microorganisms was conducted in three stages: (i) in vitro evaluation of fungal/bacterial interaction, (ii) microcosms, (iii) plant transplantation to natural soil. The profile of phenolic compounds was determined at the end of stages (ii) and (iii) and further supplemented with biometric, nutritional and analysis of the ectomycorrhizal community by denaturing gradient gel electrophoresis. In the in vitro compatibility test, B1 inhibited fungal growth at all glucose concentrations tested. In the microcosm, the levels of chlorogenic and p-coumaric acid decreased over time, unlike the protocatechuic acid which tended to increase during 70 days. After transplantation to the soil, the levels of phenolic acids decreased in all treatments, while catechin increased. B. subtilis positively influenced the fungus-plant relationship as was evidenced by higher biomass of seedlings inoculated with the dual inoculum (PisB1), both in the microcosm and soil stages. The presence of the bacteria interfered in the composition of the ECM fungal community installed in Pinus pinea L. in the soil. This leads to infer that B. subtilis may have caused a greater effect on the metabolism of P. pinea, especially in synergy with mycorrhizal fungi, than the action of the isolated fungus.info:eu-repo/semantics/publishedVersio
    corecore