25 research outputs found
Two spatially distinct posterior alpha sources fulfill different functional roles in attention
Directing attention helps extracting relevant information and suppressing distracters. Alpha brain oscillations (8-12Hz) are crucial for this process, with power decreases facilitating processing of important information and power increases inhibiting brain regions processing irrelevant information. Evidence for this phenomenon arises from visual attention studies (Worden et al., 2000b), however, the effect also exists in other modalities, including the somatosensory system (Haegens et al., 2011) and inter-sensory attention tasks (Foxe and Snyder, 2011). We investigated in human participants (10 females, 10 males) the role of alpha oscillations in focused (0/100%) vs. divided (40/60%) attention, both across modalities (visual/somatosensory; Experiment 1) and within the same modality (visual domain: across hemifields; Experiment 2) while recording EEG over 128 scalp electrodes. In Experiment 1 participants divided their attention between visual and somatosensory modality to determine the temporal/spatial frequency of a target stimulus (vibrotactile stimulus/Gabor grating). In Experiment 2, participants divided attention between two visual hemifields to identify the orientation of a Gabor grating. In both experiments, pre-stimulus alpha power in visual areas decreased linearly with increasing attention to visual stimuli. In contrast, pre-stimulus alpha power in parietal areas was lower when attention was divided between modalities/hemifields, compared to focused attention. These results suggest there are two alpha sources, where one reflects the âvisual spotlight of attentionâ and the other reflects attentional effort. To our knowledge, this is the first study to show that attention recruits two spatially distinct alpha sources in occipital and parietal brain regions, acting simultaneously but serving different functions in attention