11 research outputs found

    Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches

    Get PDF
    Plant tissue culture technique employed for the identification and isolation of bioactive phytocompounds has numerous industrial applications. It provides potential benefits for different industries which include food, pharmaceutical and cosmetics. Various agronomic crops i.e., cereals, fruits, vegetables, ornamental plants and forest trees are currently being used for in vitro propagation. Plant tissue culture coupled with biotechnological approaches leads towards sustainable agricultural development providing solutions to major food security issues. Plants are the rich source of phytochemicals with medicinal properties rendering them useful for the industrial production of pharmaceuticals and nutraceuticals. Furthermore, there are numerous plant compounds with application in the cosmetics industry. In addition to having moisturizing, anti‐ageing, anti‐wrinkle effects; plant-derived compounds also possess pharmacological properties such as antiviral, antimicrobial, antifungal, anticancer, antioxidant, anti-inflammatory, and anti-allergy characteristics. The in vitro propagation of industrially significant flora is gaining attention because of its several advantages over conventional plant propagation methods. One of the major advantages of this technique is the quick availability of food throughout the year, irrespective of the growing season, thus opening new opportunities to the producers and farmers. The sterile or endangered flora can also be conserved by plant micro propagation methods. Hence, plant tissue culture is an extremely efficient and cost-effective technique for biosynthetic studies and bio-production, biotransformation, or bioconversion of plant-derived compounds. However, there are certain limitations of in-vitro plant regeneration system including difficulties with continuous operation, product removal, and aseptic conditions. For sustainable industrial applications of in-vitro regenerated plants on a large scale, these constraints need to be addressed in future studies

    Effect of Thermo-Sonication and Ultra-High Pressure on the Quality and Phenolic Profile of Mango Juice

    No full text
    Consumer demand for safe and nutritious fruit juices has led to the development of a number of food processing techniques. To compare the effect of two processing technologies, thermo-sonication (TS) and ultra-high pressure (UHP), on the quality of mango juice, fresh mango juice was treated with TS at 25, 45, 65 and 95 °C for 10 min and UHP at 400 MPa for 10 min. The phenolic profile of mango was also analyzed using the newly developed ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry (UPLC-Q-TOF-HRMSn) and, based on this result, the effect of TS and UHP on the phenolics of mango juice was evaluated. Both treatments had minimal effects on the oBrix, pH, and titratable acidity of mango juice. The residual activities of three enzymes (polyphenol oxidase, peroxidase, and pectin methylesterase), antioxidant compounds (vitamin C, Total phenolics, mangiferin derivatives, gallotannins, and quercetin derivatives) and antioxidant activity sharply decreased with the increase in the temperature of the TS treatment. Nevertheless, the UHP treatment retained antioxidants and antioxidant activity at a high level. The UHP process is likely superior to TS in bioactive compounds and antioxidant activity preservation. Therefore, the mango juice products obtained by ultra-high-pressure processing might be more beneficial to health

    Deciphering Bacterial Community of the Fallow and Paddy Soil Focusing on Possible Biocontrol Agents

    No full text
    In pursuing higher rice production, we have often jeopardized soil at an alarming rate. It is hypothesized that intensive farming practices degrade soil health and increase the abundance of rice diseases while fallowing increases the abundance of biocontrol agents. In this study, the bacterial community was monitored in the paddy and fallow soil. Proteobacteria, Bacteroidetes, and Actinobacteria were abundant in the fallow soil, whereas Acidobacteria, Chloroflexi, and Gemmatimonadetes were more abundant in the paddy soil. Among the potential biocontrol agents, Bacillus, Thiobacillus, Rhizobium, Massilia, Rhizobacter, Streptomyces, Micromonospora, and Pseudonocardia were more abundant in the fallow soil, while Pseudomonas and Burkholderia were more abundant in the paddy soil. The possible rice pathogens, i.e., Xanthomonas and Erwinia, were more abundant in the paddy soil. The alpha diversity was higher in paddy soil than in fallow soil. Additionally, the principal coordinate analysis based on UniFrac distances revealed distinct clusters of the soils. Moreover, the functional analysis suggested that the fallow soil was abundant in genes associated with the biosynthesis of siderophores and secondary metabolites. In contrast, the paddy soil was abundant in genes related to plant-pathogen interactions. In conclusion, these results highlight the significance of fallowing to improve soil health

    Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture

    No full text
    Plant diseases are one of the major threats to global food production. Efficient monitoring and detection of plant pathogens are instrumental in restricting and effectively managing the spread of the disease and reducing the cost of pesticides. Traditional, molecular, and serological methods that are widely used for plant disease detection are often ineffective if not applied during the initial stages of pathogenesis, when no or very weak symptoms appear. Moreover, they are almost useless in acquiring spatialized diagnostic results on plant diseases. On the other hand, remote sensing (RS) techniques utilizing drones are very effective for the rapid identification of plant diseases in their early stages. Currently, drones, play a pivotal role in the monitoring of plant pathogen spread, detection, and diagnosis to ensure crops’ health status. The advantages of drone technology include high spatial resolution (as several sensors are carried aboard), high efficiency, usage flexibility, and more significantly, quick detection of plant diseases across a large area with low cost, reliability, and provision of high-resolution data. Drone technology employs an automated procedure that begins with gathering images of diseased plants using various sensors and cameras. After extracting features, image processing approaches use the appropriate traditional machine learning or deep learning algorithms. Features are extracted from images of leaves using edge detection and histogram equalization methods. Drones have many potential uses in agriculture, including reducing manual labor and increasing productivity. Drones may be able to provide early warning of plant diseases, allowing farmers to prevent costly crop failures

    Nano-biotechnology: a new approach to treat and prevent malaria

    No full text
    Malaria, the exterminator of similar to 1.5 to 2.7 million human lives yearly, is a notorious disease known throughout the world. The eradication of this disease is difficult and a challenge to scientists. Vector elimination and effective chemotherapy for the patients are key tactics to be used in the fight against malaria. However, drug resistance and environmental and social concerns are the main hurdles in this fight against malaria. Overcoming these limitations is the major challenge for the 21st-century malarial researchers. Adapting the principles of nano-biotechnology to both vector control and patient therapy is the only solution to the problem. Several compounds such as lipids, proteins, nucleic acid and metallic nanoparticles (NPs) have been successfully used for the control of this lethal malaria disease. Other useful natural reagents such as microbes and their products, carbohydrates, vitamins, plant extracts and biodegradable polymers, are also used to control this disease. Among these particles, the plant-based particles such as leaf, root, stem, latex, and seed give the best antagonistic response against malaria. In the present review, we describe certain efforts related to the control, prevention and treatment of malaria. We hope that this review will open new doors for malarial research

    Population Genetics and Anastomosis Group’s Geographical Distribution of Rhizoctonia solani Associated with Soybean

    No full text
    Rhizoctonia solani is a species complex composed of many genetically diverse anastomosis groups (AG) and their subgroups. It causes economically important diseases of soybean worldwide. However, the global genetic diversity and distribution of R. solani AG associated with soybean are unknown to date. In this study, the global genetic diversity and distribution of AG associated with soybean were investigated based on rDNA-ITS sequences deposited in GenBank and published literature. The most prevalent AG, was AG-1 (40%), followed by AG-2 (19.13%), AG-4 (11.30%), AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%) and AG-5 (3.48%). Most of the AG were reported from the USA and Brazil. Sequence analysis of internal transcribed spacers of ribosomal DNA separated AG associated with soybean into two distinct clades. Clade I corresponded to distinct subclades containing AG-2, AG-3, AG-5, AG-7 and AG-11. Clade II corresponded to subclades of AG-1 subgroups. Furthermore, AG and/or AG subgroups were in close proximity without corresponding to their geographical origin. Moreover, AG or AG subgroups within clade or subclades shared higher percentages of sequence similarities. The principal coordinate analysis also supported the phylogenetic and genetic diversity analyses. In conclusion, AG-1, AG-2, and AG-4 were the most prevalent AG in soybean. The clade or subclades corresponded to AG or AG subgroups and did not correspond to the AG’s geographical origin. The information on global genetic diversity and distribution will be helpful if novel management measures are to be developed against soybean diseases caused by R. solani

    Unveiling the Genetic Tapestry: Exploring <i>Rhizoctonia solani</i> AG-3 Anastomosis Groups in Potato Crops across Borders

    No full text
    The current study was carried out to screen 10 isolates (ARS-01–ARS-10) of Rhizoctonia. solani from potato tubers cv. Kuroda, which were collected from various potato fields in Multan, Pakistan. The isolates were found to be morphologically identical, as the hyphae exhibit the production of branches at right angles and acute angles often accompanied by septum near the emerging branches. Anastomosis grouping showed that these isolates belonged to AG-3. A pathogenicity test was performed against the susceptible Kuroda variety and among the isolates, ARS-05 exhibited the highest mean severity score of approximately 5.43, followed by ARS-09, which showed a mean severity score of about 3.67, indicating a moderate level of severity. On the lower end of the severity scale, isolates ARS-06 and ARS-07 displayed mean severity scores of approximately 0.53 and 0.57, respectively, suggesting minimal symptom severity. These mean severity scores offer insights into the varying degrees of symptom expression among the different isolates of R. solani under examination. PCoA indicates that the severe isolate causing black scurf on the Kuroda variety was AG-3. A comprehensive analysis of the distribution, genetic variability, and phylogenetic relationships of R. solani anastomosis groups (AGs) related to potato crops across diverse geographic regions was also performed to examine AG prevalence in various countries. AG-3 was identified as the most widespread group, prevalent in Sweden, China, and the USA. AG-5 showed prominence in Sweden and the USA, while AG-2-1 exhibited prevalence in China and Japan. The phylogenetic analysis unveiled two different clades: Clade I comprising AG-3 and Clade II encompassing AG-2, AG-4, and AG-5, further subdivided into three subclades. Although AGs clustered together regardless of origin, their genetic diversity revealed complex evolutionary patterns. The findings pave the way for region-specific disease management strategies to combat R. solani’s impact on potato crops
    corecore