1,068 research outputs found
Breakup of Shearless Meanders and "Outer" Tori in the Standard Nontwist Map
The breakup of shearless invariant tori with winding number
(in continued fraction representation) of the
standard nontwist map is studied numerically using Greene's residue criterion.
Tori of this winding number can assume the shape of meanders (folded-over
invariant tori which are not graphs over the x-axis in phase space),
whose breakup is the first point of focus here. Secondly, multiple shearless
orbits of this winding number can exist, leading to a new type of breakup
scenario. Results are discussed within the framework of the renormalization
group for area-preserving maps. Regularity of the critical tori is also
investigated.Comment: submitted to Chao
Nonmonotonic dependence of the absolute entropy on temperature in supercooled Stillinger-Weber silicon
Using a recently developed thermodynamic integration method, we compute the
precise values of the excess Gibbs free energy (G^e) of the high density liquid
(HDL) phase with respect to the crystalline phase at different temperatures (T)
in the supercooled region of the Stillinger-Weber (SW) silicon [F. H.
Stillinger and T. A. Weber, Phys. Rev. B. 32, 5262 (1985)]. Based on the slope
of G^e with respect to T, we find that the absolute entropy of the HDL phase
increases as its enthalpy changes from the equilibrium value at T \ge 1065 K to
the value corresponding to a non-equilibrium state at 1060 K. We find that the
volume distribution in the equilibrium HDL phases become progressively broader
as the temperature is reduced to 1060 K, exhibiting van-der-Waals (VDW) loop in
the pressure-volume curves. Our results provides insight into the thermodynamic
cause of the transition from the HDL phase to the low density phases in SW
silicon, observed in earlier studies near 1060 K at zero pressure.Comment: This version is accepted for publication in Journal of Statistical
Physics (11 figures, 1 table
Renormalization and destruction of tori in the standard nontwist map
Extending the work of del-Castillo-Negrete, Greene, and Morrison, Physica D
{\bf 91}, 1 (1996) and {\bf 100}, 311 (1997) on the standard nontwist map, the
breakup of an invariant torus with winding number equal to the inverse golden
mean squared is studied. Improved numerical techniques provide the greater
accuracy that is needed for this case. The new results are interpreted within
the renormalization group framework by constructing a renormalization operator
on the space of commuting map pairs, and by studying the fixed points of the so
constructed operator.Comment: To be Submitted to Chao
Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli
The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution; the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival, 0-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein; required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C, gamma radiation as compared with wild-type cells, showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair, homologous recombination in E. coli
Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution
We prove that for-linear, discrete, time-varying, deterministic system (perfect-model) with noisy outputs, the Riccati transformation in the Kalman filter asymptotically bounds the rank of the forecast and the analysis error covariance matrices to be less than or equal to the number of nonnegative Lyapunov exponents of the system. Further, the support of these error covariance matrices is shown to be confined to the space spanned by the unstable-neutral backward Lyapunov vectors, providing the theoretical justification for the methodology of the algorithms that perform assimilation only in the unstable-neutral subspace. The equivalent property of the autonomous system is investigated as a special case
A study of the superconducting properties of YBa2Cu(9-x)Nb(x)O(y) thin films
Effect of Niobium substitution at the copper site in YBa2Cu3O(7-x) was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa2Cu(3-x)Nb(x)O(y) where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO3 (100) substrates. Films were characterized by XRD, resistivity, I-V and J(sub c) measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. the best J(sub c) realized for x - 0.025 Nb concentration was 1.8 x 10(exp 6) A/sq cm and for 0.05 Nb concentration it was 3.2 x 10(exp 6) A/sq cm at 77 K. However, degradation of the superconducting properties, with the increase of x is greater than or equal to 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x is greater than or equal to 0.4. The growth of impurity phase YBa2NbO6 for x = 0.1 and above of Nb concentration was noted from XRD (X-Ray Diffraction) patterns. However, the site occupancy of Nb could not be confirmed from these studies
Effect of Nb2O5 and V2O5 addition on the superconducting properties of YBa2Cu3O(y) thin films
The effect of Nb2O5 and V2O5 addition on the superconducting properties and microstructure of YBa2Cu3O(y) has been studied in thin films. Polycrystalline targets for laser ablation were prepared by mixing high purity V2O5 or Nb2O5 powders with a well characterized YBa2Cu3O(y) powder in the range 0 to 4 wt percent by solid state reaction method. Thin films (approximately 1500 A thickness) of the above targets were grown on (100) SrTiO3 (STO) and (100) LaAlO3 (LAO) substrates at 700 C temperature by pulsed laser deposition (PLD) technique. In the case of Nb2O5 addition we have noticed an increase in J(sub c) up to 0.5 wt percent and higher additive concentration (greater than 0.5 wt percent) have degraded the superconducting properties. However, in the case of V2O3 addition, there is an improvement in current density and microstructural properties up to 1 wt percent and the superconducting properties degrade for concentrations greater than 1 wt percent. The best J(sub c) for 0.5 wt percent of Nb2O5 added YBCO thin film is 1.6 x 10(exp 6) A/sq cm and for that of V2O5 added sample is 3.4 x 10(exp 6) A/sq cm at 77 K as compared to the pure YBa2Cu3O(y) (YBCO) film J(sub c) (1.2 x 10(exp 6) A/sq cm) observed on STO substrates. The reason for improvement in J(sub c) and microstructural properties in the case of V2O5 addition could be due to the low melting of V2O5 (690 C) which can act as a very good surfactant during deposition. Over all, we have realized that Nb2O5 addition or V2O5 addition to YBCO have shown significant improvement over the undoped YBa2Cu3O(7-x) films grown under identical conditions
Optimization of HALO structure effects in 45nm p-type MOSFETs device using Taguchi Method
In this study, the Taguchi method was used to
optimize the effect of HALO structure or halo implant variations on
threshold voltage (VTH) and leakage current (ILeak) in 45nm p-type
Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)
device. Besides halo implant dose, the other process parameters
which used were Source/Drain (S/D) implant dose, oxide growth
temperature and silicide anneal temperature. This work was done
using TCAD simulator, consisting of a process simulator, ATHENA
and device simulator, ATLAS. These two simulators were combined
with Taguchi method to aid in design and optimize the process
parameters. In this research, the most effective process parameters
with respect to VTH and ILeak are halo implant dose (40%) and S/D
implant dose (52%) respectively. Whereas the second ranking factor
affecting VTH and ILeak are oxide growth temperature (32%) and halo
implant dose (34%) respectively. The results show that after
optimizations approaches is -0.157V at ILeak=0.195mA/μm
Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers
Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties
- …