21 research outputs found

    Fly Ash and Composted Biosolids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    Get PDF
    Soils of northwest New Mexico have an elevated pH and CaCO3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could biosolids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate)) fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted biosolids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN), biosolids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. pH increased in fly ash soil while salinity increased in biosolids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted biosolids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs

    RESPONSE OF CHILE PEPPER (Capsicum annuum L.) TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    No full text
    The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L.) cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1) salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1) and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source

    Short-Term Biochar Impacts on Crop Performance and Soil Quality in Arid Sandy Loam Soil

    No full text
    A two-year field study was conducted in sandy loam soil to evaluate the impacts of biochar on soil quality and the growth and yields of pinto bean (Phaseolus vulgaris) and sorghum–Sudan (Sorghum × drummondii). A wood-derived commercial biochar was applied at three rates to pinto bean (PB) and sorghum–Sudan (SS) plots. The biochar application rates applied annually for two years to PB plots were 0, 2.2, and 11.2 Mg ha−1, whereas the rates for SS plots were 0, 3.4, and 6.7 Mg ha−1. Crop growth and harvest parameters were evaluated. Assessed soil measurements included pH, electrical conductivity, available nutrients, soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil aggregates, and volumetric soil moisture content. The results showed no significant differences in plant growth parameters and yields over the two growing seasons for both PB and SS. Compared to the control treatment, the biochar at 11.2 Mg ha−1 in PB plots improved soil moisture retention after irrigation by 19% in the first year and 25% in the second year. The SOM in the SS plot at 6.7 Mg ha−1 biochar rate was higher (1.02%) compared to the control plot (0.82%), whereas a similar increase was not observed in the PB plot. Although biochar rates did not affect most of the soil measurements, there were significant changes in soil properties over time, regardless of biochar treatments: POXC increased in the PB and SS plots; SOM increased in the SS plot; and electrical conductivity, sodium adsorption ratio, and most soil micronutrients decreased. This research was conducted over two years; the effects of biochar can persist for much longer, indicating the need for longer-term biochar field studies in arid agroecosystems

    RESPONSE OF CHILE PEPPER (Capsicum annuum L.) TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: I.GROWTH AND YIELD

    No full text
    The effect of two sources of nitrogen on plant growth, and fruit yield of chile pepper (Capsicum annuum L.) cv. Sandia grown in greenhouse to increased salinity   were evaluated. An organic source extracted from grass clippings in rates of 120 and 200 kg N ha-1, and another inorganic (ammonium nitrate) in rate of 120 kg ha-1 were combined with low, moderate and high (1.5, 4.5, and 6.5 dS m-1) salinity levels arranged in a randomized complete block design replicated four times. Salinity treatments reduced dry matter production, leaf area, relative growth rate and net assimilation rate but increased leaf area ratio. Mean fresh fruit yields decreased for each N rate and source combinations as soil salinity increased. The organic fertilizer produced higher fruit yields tan the inorganic fertilizer. The highest fruit yield was obtained with the increased rate of organic N.    The fruit number was more affected by salinity than the individual fruit weight. This organic fertilizer may be an effective N source for chile pepper and other vegetable crops grown under non- and salt-stressed conditions

    Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems

    No full text
    Improving the soil quality in arid agro-ecosystems requires a greater understanding of how the time-of-sampling and management affect the soil measurements. We evaluated the selected soil quality indicators on samples collected at a 0–0.15 m depth, and at various sampling dates of the year, corresponding to the fall of 2015, winter of 2015/2016, spring of 2016, and the summer of 2016. The three crop management systems sampled included alfalfa (Medicago sativa), upland cotton (Gossypium hirsutum), and pecan (Carya illinoinensis). The soil properties measured included the wet aggregate stability (WAS), mean weight diameter of dry aggregates (MWD), dry aggregates greater than 2 mm (AGG >2 mm), dry aggregates less than 0.25 mm (AGG <0.25 mm), available water capacity (AWC), soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil bulk density (BD), soil electrical conductivity (EC), pH, nitrate-nitrogen (NO3-N), extractable potassium (K), extractable phosphorus (P), calcium (Ca), magnesium (Mg), sodium adsorption ratio (SAR), and micronutrients (zinc, iron, copper, and manganese). Out of the 21 soil measurements, 15 varied significantly with the time-of-sampling within a year, although there were no consistent trends in variability. However, only a few measurements differed significantly with the crop management practices tested. Wet aggregate stability, MWD, AWC, and BD were significantly higher in the summer, while POXC and SOM were significantly higher in the fall and winter, respectively. Soil quality indicators such as NO3-N, K, and P decreased significantly during the spring. This study shows that the seasonal variability of the soil measurements can be significant in the arid agro-ecosystems, with the magnitude of variation depending on the measurement type. The soil managers in the region need to account for this variability, in order to be able to assess the changes in the soil quality. Also, because of the variability that can occur across the different sampling dates within a year, it is advisable to sample during the same period every year, for a consistent interpretation of the directional changes of the soil quality indicators

    Visible Near-Infrared Reflectance and Laser-Induced Breakdown Spectroscopy for Estimating Soil Quality in Arid and Semiarid Agroecosystems

    No full text
    Visible near-infrared reflectance spectroscopy (VNIRS) and laser-induced breakdown spectroscopy (LIBS) are potential methods for the rapid and less expensive assessment of soil quality indicators (SQIs). The specific objective of this study was to compare VNIRS and LIBS for assessing SQIs. Data was collected from over 140 soil samples taken from multiple agricultural management systems in New Mexico, belonging to arid and semiarid agroecosystems. Sampled sites included New Mexico State University Agricultural Science Center research fields and several commercial farm fields in New Mexico. Partial least squares regression (PLSR) was used to establish predictive relationships between spectral data and SQIs. Fifteen soil measurements were modeled including the soil organic matter (SOM), permanganate oxidizable carbon (POXC), total microbial biomass (TMB), total bacteria biomass (TBB), total fungi biomass (TFB), mean weight diameter of dry aggregates (MWD), aggregates 2–4 mm (AGG > 2 mm), aggregates < 0.25 mm (AGG < 0.25 mm), wet aggregate stability (WAS), electrical conductivity (EC), calcium (Ca), magnesium (Mg), sodium (Na), and iron (Fe). Overall, calibrations based on measurements irrespective of locations performed better for LIBS and combined VNIRS-LIBS. Measurements separated according to locations highly improved the quality of prediction for VNIRS as compared to combined locations. For example, the prediction R2 values for regression of VNIRS were 0.19 for SOM, 0.30 for POXC, 0.24 for MWD, 0.15 for AGG > 2 mm, and 0.13 for EC in combined datasets irrespective of location. When separated according to locations, for one of the locations, the predictive R2 values for VNIRS were 0.48 for SOM, 0.70 for POXC, 0.67 for MWD, 0.60 for AGG > 2 mm, and 0.51 for EC. The prediction values varied with the sampling time for both LIBS and VNIRS. For example, the prediction values of some SQIs using VNIRS were higher in samples collected in winter for measurements, including SOM (0.90), MWD (0.96), WAS (0.66), and EC (0.94). Using the VNIRS, the corresponding predictive values for the same SQIs were lower for samples collected in the fall (SOM (0.61), MWD (0.45), WAS (0.46), and EC (0.65)). While this study illustrates the prospects of VNIRS and LIBS for estimating SQIs, a more comprehensive evaluation, using a larger regional dataset, is required to understand how the site and soil factors affect VNIRS and LIBS, in order to enhance the utility of these methods for soil quality assessment in arid and semiarid agroecosystems

    Arsenic concentrations in dust emissions from wind erosion and off-road vehicles in the Nellis Recreational Area, Nevada, USA

    No full text
    Field and laboratory experiments were performed in the Nellis Dunes Recreational Area near Las Vegas, NV, USA to evaluate arsenic concentrations associated with dust emissions from wind erosion and offroad vehicles. Soil samples were collected from 17 types of desert surfaces and five unpaved parking lot locations for analyses. The surface units are based on surficial characteristics that affect dust emissions. Arsenic concentrations were also measured in dust emitted from each surface unit using a Portable In Situ Wind Erosion Laboratory (PI-SWERL). Emissions were measured from ORV trails and undisturbed terrain. Concentrations of As in the soil and parking lot samples ranged from 3.49 to 83.02 lg µg-1 and from 16.13 to 312 lg ug-1 in the PI-SWERL samples. The lower concentrations in the soil samples are expected because of the larger particle sizes (<2 mm) as compared to the PI-SWERL samples (<10 and 10–60 lm). Soluble As in the PI-SWERL samples was as high as 14.7 lg g1. In the Nellis Dunes area the emission rates for As for wind-induced emissions (wind erosion) are highest for the surfaces with significant amounts of sand. Surfaces rich in silt and clay, on the other hand, produce nearly no arsenic during wind erosion but can emit substantial arsenic concentrations when driven on by off-road vehicles. The elevated arsenic emissions from the Nellis Dunes area are of great concern because the site is located in the immediate vicinity of the city of Las Vegas, and utilized by over 300,000 visitors annually.status: publishe

    Heavy Metal Contamination in Agricultural Soil : Environmental Pollutants Affecting Crop Health

    No full text
    Heavy metals and metalloids (HMs) are environmental pollutants, most notably cadmium, lead, arsenic, mercury, and chromium. When HMs accumulate to toxic levels in agricultural soils, these non-biodegradable elements adversely affect crop health and productivity. The toxicity of HMs on crops depends upon factors including crop type, growth condition, and developmental stage; nature of toxicity of the specific elements involved; soil physical and chemical properties; occurrence and bioavailability of HM ions in the soil solution; and soil rhizosphere chemistry. HMs can disrupt the normal structure and function of cellular components and impede various metabolic and developmental processes. This review evaluates: (1) HM contamination in arable lands through agricultural practices, particularly due to chemical fertilizers, pesticides, livestock manures and compost, sewage-sludge-based biosolids, and irrigation; (2) factors affecting the bioavailability of HM elements in the soil solution, and their absorption, translocation, and bioaccumulation in crop plants; (3) mechanisms by which HM elements directly interfere with the physiological, biochemical, and molecular processes in plants, with particular emphasis on the generation of oxidative stress, the inhibition of photosynthetic phosphorylation, enzyme/protein inactivation, genetic modifications, and hormonal deregulation, and indirectly through the inhibition of soil microbial growth, proliferation, and diversity; and (4) visual symptoms of highly toxic non-essential HM elements in plants, with an emphasis on crop plants. Finally, suggestions and recommendations are made to minimize crop losses from suspected HM contamination in agricultural soils.Arts and Social Sciences, Irving K. Barber Faculty of (Okanagan)Non UBCBiology, Department of (Okanagan)ReviewedFacult
    corecore