2 research outputs found

    Relationship of Extensional Viscosity and Liquid Crystalline Transition to Length Distribution in Carbon Nanotube Solutions

    No full text
    We demonstrate that the length of carbon nanotubes (CNTs) can be determined simply and accurately from extensional viscosity measurements of semidilute CNT solutions. The method is based on measuring the extensional viscosity of CNT solutions in chlorosulfonic acid with a customized capillary thinning rheometer and determining CNT aspect ratio from the theoretical relation between extensional viscosity and aspect ratio in semidilute solutions of rigid rods. We measure CNT diameter <i>d</i> by transmission electron microscopy (TEM) and arrive at CNT length <i>L</i>. By studying samples grown by different methods, we show that the method works well for CNT lengths ranging from 0.4 to at least 20 μm, a wider range than for previous techniques. Moreover, we measure the isotropic-to-nematic transition concentration (i.e., isotropic cloud point) φ<sub>iso</sub> of CNT solutions and show that this transition follows Onsager-like scaling φ<sub>iso</sub> ∼ <i>d</i>/<i>L.</i> We characterize the length distributions of CNT samples by combining the measurements of extensional viscosity and transition concentration and show that the resulting length distributions closely match distributions obtained by cryo-TEM measurements. Interestingly, CNTs appear to have relatively low polydispersity compared to polymers and high polydispersity compared to colloidal particles

    Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating

    No full text
    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass
    corecore