43 research outputs found

    External sensory-motor cues while managing unexpected slippages can violate the planar covariation law.

    Get PDF
    This study was aimed at investigating the intersegmental coordination of six older adults while managing unexpected slippages delivered during steady walking, and wearing an Active Pelvis Orthosis (APO). The APO was setup either to assist volunteers at the hip levels during balance loss or to be transparent. The Planar Covariation Law (PCL) of the lower limb elevation angles was the main tool used to assess the intersegmental coordination of both limbs (i.e., the perturbed and unperturbed ones). Results revealed that, after the onset of the perturbation, elevation angles of both limbs do not covary, a part from the robot-mediated assistance. These new evidences suggest that external sensory-motor cues can alter the temporal synchronization of elevation angles, thus violating the PCL. (C) 2019 Elsevier Ltd. All rights reserved

    Analyzing the Effect of Crowds on Passenger Behavior Inside Urban Trains through Laboratory Experiments—A Pilot Study

    Get PDF
    The objective is to study the distribution of passengers inside urban trains for different levels of crowding. The study is carried out through the observation of videos made by laboratory experiments in which a mock-up of a carriage represented the boarding and alighting process. The Fruin’s Level of Service (LOS) was adopted, but with a different approach, in which the train is divided into five zones (central hall, central aisle, side aisle, central seats and side seats). The experiments are based on the behavior of passengers in the London Underground; however, this study could be expanded to any conventional rail or LRT system. For the laboratory experiments, it is proposed to build a metro carriage and a corresponding platform section, and the scenarios will include different levels of crowding of passengers boarding and alighting to produce a variation in the density on the platform. According to the crowding level, the results allow obtaining the distribution and movements generated by passengers in the five zones for different instants of time during the process of boarding and alighting. It is observed that passengers are distributed according to safety and efficiency conditions. For example, passengers tried to avoid contact with each other unless it is inevitable. In relation to comfort, the seats of the carriage are always used even if there is a low level of crowding. If the crowding level increases, the boarding and alighting time go up. In addition, passengers will spend one or two seconds more if the “let’s get off before getting on the carriage” behavior is breached. This kind of experiment can be used in further research as a way to test “what-if” scenarios using this new method of discretization of the space inside the train, which cannot be tested in existing stations due to restrictions such as the weather, variability of the train frequency, current design of the trains, among others. New experiments are necessary for future research to include other types of passengers such as people with disabilities or reduced mobility

    EEG/EMG based Architecture for the Early Detection of Slip-induced Lack of Balance

    No full text
    In this paper, we propose the preliminary version of a novel pre-impact fall detection (PIFD) strategy, optimized for the early recognition of balance loss during the steady walking.The technique has been implemented in a multi-sensor architecture aiming to jointly analyzes the muscular and cortical activity. The physiological signals were acquired from 10 electromyography (EMC) electrodes on the lower limbs and 13 electroencephalography (EEG) sites all along the scalp.Data from the EMGs are statistically treated and used both to identify abnormal muscular activities and to trigger the cortical activity assessment. The EEG computation branch evaluate the rate of variation of the EEG power spectrum density, named m, to describe the cortical responsiveness in live bands of interest. Then, a logical conditions network allows the system to recognize the loss of balance induced by the slippage, by considering both the evaluated muscular parameters and the cortical ones.Experimental validation on six adults (supported by the motion capture system) showed that the system reacts in a time compliant with the fall dynamic request (403.16 ms), ensuring a competitive detection accuracy (Sensitivity =93.33%, Specificity=99.82 %)

    Repeated exposure to tripping like perturbations elicits more precise control and lower toe clearance of the swinging foot during steady walking

    No full text
    Controlling minimum toe clearance (MTC) is considered an important factor in preventing tripping. In the current study, we investigated modifications of neuro-muscular control underlying toe clearance during steady locomotion induced by repeated exposure to tripping-like perturbations of the right swing foot. Fourteen healthy young adults (mean age 26.4 ± 3.1 years) participated in the study. The experimental protocol consisted of three identical trials, each involving three phases: steady walking (baseline), perturbation, and steady walking (post-perturbation). During the perturbation, participants experienced 30 tripping-like perturbations at unexpected timing delivered by a custom-made mechatronic perturbation device. The temporal parameters (cadence and stance phase%), mean, and standard deviation of MTC were computed across approximately 90 strides collected during both baseline and post-perturbation phases, for all trials. The effects of trial (three levels), phase (two levels: baseline and post-perturbation) and foot (two levels: right and left) on the outcome variables were analyzed using a three-way repeated measures analysis of variance. The results revealed that exposure to repeated trip-like perturbations modified MTC toward more precise control and lower toe clearance of the swinging foot, which appeared to reflect both the expectation of potential forthcoming perturbations and a quicker compensatory response in cases of a lack of balance. Moreover, locomotion control enabled subjects to maintain symmetric rhythmic features during post-perturbation steady walking. Finally, the effects of exposure to perturbation quickly disappeared among consecutive trials

    Cortical reactive balance responses to unexpected slippages while walking: A pilot study

    No full text
    Understanding how the human brain cortex behaves when the dynamical balance is unexpectedly challenged can be useful to enable fall prevention strategies during daily activities. In this respect, we designed and tested a novel methodological approach to early detect modifications of the scalp-level signals when steady walking is perturbed.Four young adults were asked to manage unexpected bilateral slippages while steadily walking at their self-selected speed. Lower limb kinematics, electromyographic (EMG) and electroencephalographic (EEG; 13 channels from motor and sensory-motor cortex areas) signals were synchronously recorded.EMG signals from Vastus Medialis (both sides) were used to trigger the analysis of the EEG before and after the perturbation onset. Cortical activity was then assessed and compared pre vs. post perturbation. Specifically, for each gait cycle, the rate of variation of the EEG power spectrum density, named m, was used to describe the cortical responsiveness in five bands of interests: (4-7 Hz), α (8-12 Hz), β I, β II, β III rhythms (13-15, 15-20, 18-28 Hz).Results revealed a sharp increment of m early after the onset of the perturbation (perturbed step) compared to steady locomotion, for all rhythms. This cortical behavior disappeared during the recovery step.This study promisingly supports the evidence that the proposed approach can distinguish between steady walking and early reactive balance recovery, paving the way for the EEG-based monitoring of the fall risk during daily activities

    Uncontrolled manifold analysis of the effects of a perturbation-based training on the organization of leg joint variance in cerebellar ataxia

    No full text
    Walking patterns of persons affected by cerebellar ataxia (CA) are characterized by wide stride-to-stride variability ascribable to: the background pathology-related sensory-motor noise; the motor redundancy, i.e., an excess of elemental degrees of freedom that overcomes the number of variables underlying a specific task performance. In this study, we first tested the hypothesis that healthy and, especially, CA subjects can effectively exploit solutions in the domain of segmental angles to stabilize the position of either the foot or the pelvis (task performance) across heel strikes, in accordance with the uncontrolled manifold (UCM) theory. Next, we verified whether a specific perturbation-based training allows CA subjects to further take advantage of this coordination mechanism to better cope with their inherent pathology-related variability. Results always rejected the hypothesis of pelvis stabilization whereas supported the idea that the foot position is stabilized across heel strikes by a synergic covariation of elevation and azimuth angles of lower limb segments in CA subjects only. In addition, it was observed that the perturbation-based training involves a decreasing trend in the variance component orthogonal to the UCM in both groups, reflecting an improved accuracy of the foot control. Concluding, CA subjects can effectively structure the wide amount of pathology-related sensory-motor noise to stabilize specific task performance, such as the foot position across heel strikes. Moreover, the promising effects of the proposed perturbation-based training paradigm are expected to improve the coordinative strategy underlying the stabilization of the foot position across strides, thus ameliorating balance control during treadmill locomotion

    Pre-impact detection algorithm to identify lack of balance due to tripping-like perturbations

    No full text
    This study investigates the performance of an updated version of our pre-impact detection algorithm while parsing out hip kinematics in order to identify unexpected tripping-like perturbations during walking. This approach grounds on the hypothesis that due to unexpected gait disturbances, the cyclic features of hip kinematics are suddenly altered thus promptly highlighting that the balance is challenged. To achieve our goal, hip angles of eight healthy young subjects were recorded while they were managing unexpected tripping trials delivered during the steady locomotion. Results showed that the updated version of our pre-impact detection algorithm allows for identifying a lack of balance due to tripping-like perturbations, after a suitable tuning of the algorithm parameters. The best performance is represented by a mean detection time ranging within 0.8-0.9 s with a low percentage of false alarms (i.e., lower than 10%). Accordingly, we can conclude that the proposed strategy is able to detect lack of balance due to different kinds of gait disturbances (e.g., slippages, tripping) and that it could be easily implemented in lower limb orthoses/prostheses since it only relies on joint angles

    Pre-impact detection algorithm to identify lack of balance due to tripping-like perturbations

    No full text
    This study investigates the performance of an updated version of our pre-impact detection algorithm while parsing out hip kinematics in order to identify unexpected tripping-like perturbations during walking. This approach grounds on the hypothesis that due to unexpected gait disturbances, the cyclic features of hip kinematics are suddenly altered thus promptly highlighting that the balance is challenged. To achieve our goal, hip angles of eight healthy young subjects were recorded while they were managing unexpected tripping trials delivered during the steady locomotion. Results showed that the updated version of our pre-impact detection algorithm allows for identifying a lack of balance due to tripping-like perturbations, after a suitable tuning of the algorithm parameters. The best performance is represented by a mean detection time ranging within 0.8-0.9 s with a low percentage of false alarms (i.e., lower than 10%). Accordingly, we can conclude that the proposed strategy is able to detect lack of balance due to different kinds of gait disturbances (e.g., slippages, tripping) and that it could be easily implemented in lower limb orthoses/prostheses since it only relies on joint angles

    Effectiveness of a Robot-Mediated Strategy While Counteracting Multidirectional Slippages

    No full text
    This study investigates the effectiveness of a robot-mediated strategy aimed at promoting balance recovery after multidirectional slippages. Six older adults were asked to manage anteroposterior and mediolateral slippages while donning an active pelvis orthosis (APO). The APO was set up either to assist volunteers during balance loss or to be transparent. The margin of stability, in sagittal and frontal planes, was the main metric to assess the effectiveness of balance recovery. Results showed that the assistive strategy is effective at promoting balance recovery in the sagittal plane, for both perturbing paradigms; however, it is not effective at controlling stability in the frontal plane

    Repeated exposure to tripping like perturbations elicits more precise control and lower toe clearance of the swinging foot during steady walking

    Get PDF
    Controlling minimum toe clearance (MTC) is considered an important factor in preventing tripping. In the current study, we investigated modifications of neuro-muscular control underlying toe clearance during steady locomotion induced by repeated exposure to tripping-like perturbations of the right swing foot. Fourteen healthy young adults (mean age 26.4 +/- 3.1 years) participated in the study. The experimental protocol consisted of three identical trials, each involving three phases: steady walking (baseline), perturbation, and steady walking (post perturbation). During the perturbation, participants experienced 30 tripping-like perturbations at unexpected timing delivered by a custom-made mechatronic perturbation device. The temporal parameters (cadence and stance phase%), mean, and standard deviation of MTC were computed across approximately 90 strides collected during both baseline and post-perturbation phases, for all trials. The effects of trial (three levels), phase (two levels: baseline and post-perturbation) and foot (two levels: right and left) on the outcome variables were analyzed using a three-way repeated measures analysis of variance. The results revealed that exposure to repeated trip-like perturbations modified MTC toward more precise control and lower toe clearance of the swinging foot, which appeared to reflect both the expectation of potential forthcoming perturbations and a quicker compensatory response in cases of a lack of balance. Moreover, locomotion control enabled subjects to maintain symmetric rhythmic features during post-perturbation steady walking. Finally, the effects of exposure to perturbation quickly disappeared among consecutive trials
    corecore