1,377 research outputs found

    Planetary Companions Around Two Solar Type Stars: HD 195019 and HD 217107

    Full text link
    We have enlarged the sample of stars in the planet search at Lick Observatory. Doppler measurements of 82 new stars observed at Lick Observatory, with additional velocities from Keck Observatory, have revealed two new planet candidates. The G3V/IV star, HD 195019, exhibits Keplerian velocity variations with a period of 18.27 d, an orbital eccentricity of 0.03 +/- 0.03, and M sin i = 3.51 M_Jup. Based on a measurement of Ca II H&K emission, this star is chromospherically inactive. We estimate the metallicity of HD 195019 to be approximately solar from ubvy photometry. The second planet candidate was detected around HD 217107, a G7V star. This star exhibits a 7.12 d Keplerian period with eccentricity 0.14 +/- 0.05 and M sin i = 1.27 M_Jup. HD 217107 is also chromospherically inactive. The photometric metallicity is found to be [Fe/H] = +0.29 +/- 0.1 dex. Given the relatively short orbital period, the absence of tidal spin-up of HD 217107 provides a theoretical constraint on the upper limit of the companion mass of < 11 M_Jup.Comment: 15 pages, plus 6 figures. To appear in Jan 1999 PAS

    'Bodily precision': A predictive coding account of individual differences in interoceptive accuracy

    Get PDF
    Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of ‘interoceptive accuracy’ (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on ‘precision’ in interoceptive systems, i.e. the relative weight accorded to ‘prior’ representations and ‘prediction errors’ (that part of incoming interoceptive sensation not accounted for by priors), at various levels within the cortical hierarchy and between modalities. Attention has the effect of optimizing precision both within and between sensory modalities. Our central assumption is that people with high IAcc are able, with attention, to prioritize interoception over other sensory modalities and can thus adjust the relative precision of their interoceptive priors and prediction errors, where appropriate, given their personal history. This characterization explains key findings within the interoception literature; links results previously seen as unrelated or contradictory; and may have important implications for understanding cognitive, behavioural and psychopathological consequences of both high and low interoceptive awareness. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’

    The California Planet Survey II. A Saturn-Mass Planet Orbiting the M Dwarf Gl649

    Get PDF
    We report precise Doppler measurements of the nearby (d = 10.34 pc) M dwarf Gl649 that reveal the presence of a planet with a minimum mass Msini = 0.328 Mjup in an eccentric (e = 0.30), 598.3 day orbit. Our photometric monitoring reveals Gl649 to be a new variable star with brightness changes on both rotational and decadal timescales. However, neither of these timescales are consistent with the 600-day Doppler signal and so provide strong support for planetary reflex motion as the best interpretation of the observed radial velocity variations. Gl649b is only the seventh Doppler-detected giant planet around an M dwarf. The properties of the planet and host-star therefore contribute significant information to our knowledge of planet formation around low-mass stars. We revise and refine the occurrence rate of giant planets around M dwarfs based on the California Planet Survey sample of low-mass stars (M* < 0.6 Msun). We find that f = 3.4^{+2.2}_{-0.9}% of stars with M* < 0.6 Msun harbor planets with Msini > 0.3$ Mjup and a < 2.5 AU. When we restrict our analysis to metal-rich stars with [Fe/H] > +0.2 we find the occurrence rate is 10.7^{+5.9}_{-4.2}%.Comment: 8 pages, 4 figures, 3 tables, PASP accepte

    M2K: I. A Jovian mass planet around the M3V star HIP79431

    Full text link
    Doppler observations from Keck Observatory reveal the presence of a planet with Msini of 2.1 Mjup orbiting the M3V star HIP79431. This is the sixth giant planet to be detected in Doppler surveys of M dwarfs and it is one of the most massive planets discovered around an M dwarf star. The planet has an orbital period of 111.7 days and an orbital eccentricity of 0.29. The host star is metal rich, with an estimated [Fe/H] = +0.4. This is the first planet to emerge from our new survey of 1600 M-to-K dwarf stars.Comment: 5 figure

    Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage

    Get PDF
    AbstractAs an effort to evaluate risks associated with geologic sequestration of CO2, this work assesses the potential effects of CO2 leakage on groundwater quality. Reactive transport simulations are performed to study the chemical evolution of aqueous Pb and As after the intrusion of CO2 from a storage reservoir into a shallow confined groundwater resource. The simulations use mineralogies representative of shallow potable aquifers in the USA; both 2D (depth-averaged) and 3D simulations are conducted. Sensitivity studies are also conducted for variation in hydrological and geochemical conditions, as well as several other critical parameters. Model results suggest that a significant increase of aqueous lead (Pb) and arsenic (As) may occur in response to CO2 intrusion, but in most sensitivity cases their concentrations remain below the EPA specified maximum contaminant levels (MCLs). Adsorption/desorption from mineral surfaces significantly impacts the mobilization of Pb and As. Results from the 3D model agree fairly well with the 2D model in cases where the rate of CO2 intrusion is relatively small (so that the majority of CO2 readily dissolves in the groundwater), whereas discrepancies between 2D and 3D models are observed when the CO2 intrusion rate is comparably large

    Plasticity in Unimodal and Multimodal Brain Areas Reflects Multisensory Changes in Self-Face Identification

    Get PDF
    Nothing provides as strong a sense of self as seeing one's face. Nevertheless, it remains unknown how the brain processes the sense of self during the multisensory experience of looking at one's face in a mirror. Synchronized visuo-tactile stimulation on one's own and another's face, an experience that is akin to looking in the mirror but seeing another's face, causes the illusory experience of ownership over the other person's face and changes in self-recognition. Here, we investigate the neural correlates of this enfacement illusion using fMRI. We examine activity in the human brain as participants experience tactile stimulation delivered to their face, while observing either temporally synchronous or asynchronous tactile stimulation delivered to another's face on either a specularly congruent or incongruent location. Activity in the multisensory right temporo-parietal junction, intraparietal sulcus, and the unimodal inferior occipital gyrus showed an interaction between the synchronicity and the congruency of the stimulation and varied with the self-reported strength of the illusory experience, which was recorded after each stimulation block. Our results highlight the important interplay between unimodal and multimodal information processing for self-face recognition, and elucidate the neurobiological basis for the plasticity required for identifying with our continuously changing visual appearanc

    Whightman function and scalar Casimir densities for a wedge with a cylindrical boundary

    Full text link
    Whightman function, vacuum expectation values of the field square, and the energy-momentum tensor are investigated for a scalar field inside a wedge with and without a coaxial cylindrical boundary. Dirichlet boundary conditions are assumed on the bounding surfaces. The vacuum energy-momentum tensor is evaluated in the general case of the curvature coupling parameter. Making use of a variant of the generalized Abel-Plana formula, expectation values are presented as the sum of two terms. The first one corresponds to the geometry without a cylindrical boundary and the second one is induced by the presence of this boundary. The asymptotic behaviour of the field square, vacuum energy density and stresses near the boundaries are investigated. The additional vacuum forces acting on the wedge sides due the presence of the cylindrical boundary are evaluated and it is shown that these forces are attractive. As a limiting case, the geometry of two parallel plates perpendicularly intersected by a third one is analyzed.Comment: 19 pages, 6 figures, new section is added on the VEVs for the region outside the cylidrical shell, discussion and references added, accepted for publication in J. Phys.

    Ten Low Mass Companions from the Keck Precision Velocity Survey

    Get PDF
    Ten new low mass companions have emerged from the Keck precision Doppler velocity survey, with minimum (msini) masses ranging from 0.8 mjup to 0.34 msun. Five of these are planet candidates with msini < 12 mjup, two are brown dwarf candidates with msini ~30 mjup, and three are low mass stellar companions. Hipparcos astrometry reveals the orbital inclinations and masses for three of the (more massive) companions, and it provides upper limits to the masses for the rest. A new class of extrasolar planet is emerging, characterized by nearly circular orbits and orbital radii greater than 1 AU. The planet HD 4208b appears to be a member of this new class. The mass distribution of extrasolar planets continues to exhibit a rapid rise from 10 mjup toward the lowest detectable masses near 1 msat.Comment: 26 pages, TeX, plus 13 postscript figure

    The C_2 heat-kernel coefficient in the presence of boundary discontinuities

    Get PDF
    We consider the heat-kernel on a manifold whose boundary is piecewise smooth. The set of independent geometrical quantities required to construct an expression for the contribution of the boundary discontinuities to the C_{2} heat-kernel coefficient is derived in the case of a scalar field with Dirichlet and Robin boundary conditions. The coefficient is then determined using conformal symmetry and evaluation on some specific manifolds. For the Robin case a perturbation technique is also developed and employed. The contributions to the smeared heat-kernel coefficient and cocycle function are calculated. Some incomplete results for spinor fields with mixed conditions are also presented.Comment: 25 pages, LaTe

    Casimir energy in the MIT bag model

    Get PDF
    The vacuum energies corresponding to massive Dirac fields with the boundary conditions of the MIT bag model are obtained. The calculations are done with the fields occupying the regions inside and outside the bag, separately. The renormalization procedure for each of the situations is studied in detail, in particular the differences occurring with respect to the case when the field extends over the whole space. The final result contains several constants undergoing renormalization, which can be determined only experimentally. The non-trivial finite parts which appear in the massive case are found exactly, providing a precise determination of the complete, renormalized zero-point energy for the first time, in the fermionic case. The vacuum energy behaves like inverse powers of the mass for large masses.Comment: 19 pages, Latex, 1 Postscript figure, submitted to J. Phys.
    corecore