747 research outputs found

    Spin-dependent thermoelectric transport coefficients in near-perfect quantum wires

    Full text link
    Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak thickness fluctuations. Such systems exhibit anomalies in conductance near 1/4 and 3/4 of 2e^2/h on the rising edge to the first conductance plateau, explained by singlet and triplet resonances of conducting electrons with a single weakly bound electron in the wire [T. Rejec, A. Ramsak, and J.H. Jefferson, Phys. Rev. B 62, 12985 (2000)]. We extend this work to study the Seebeck thermopower coefficient and linear thermal conductance within the framework of the Landauer-Buettiker formalism, which also exhibit anomalous structures. These features are generic and robust, surviving to temperatures of a few degrees. It is shown quantitatively how at elevated temperatures thermal conductance progressively deviates from the Wiedemann-Franz law.Comment: To appear in Phys. Rev. B 2002; 3 figure

    Lack of correlation of stem cell markers in breast cancer stem cells

    Get PDF
    BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer

    Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide

    Full text link
    We have measured the rf magnetoconductivity of unidirectional lateral superlattices (ULSLs) by detecting the attenuation of microwave through a coplanar waveguide placed on the surface. ULSL samples with the principal axis of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave electric field are examined. For low microwave power, we observe expected anisotropic behavior of the commensurability oscillations (CO), with CO in samples S_perp and S_|| dominated by the diffusion and the collisional contributions, respectively. Amplitude modulation of the Shubnikov-de Haas oscillations is observed to be more prominent in sample S_||. The difference between the two samples is washed out with the increase of the microwave power, letting the diffusion contribution govern the CO in both samples. The failure of the intended directional selectivity in the conductivity measured with high microwave power is interpreted in terms of large-angle electron-phonon scattering.Comment: 8 pages, 5 figure

    Trouble at the top: The construction of a tenant identity in the governance of social housing organizations

    Get PDF
    The project of citizen governance has transformed the social housing sector in England where 20,000 tenants now sit as directors on the boards of housing associations, but the entrance of social housing tenants to the boardroom has aroused opposition from the chief executives of housing companies and triggered regulatory intervention from government inspectors. This paper investigates the cause of these tensions through a theoretical framework drawn from the work of feminist philosopher Judith Butler. It interprets housing governance as an identificatory project with the power to constitute tenant directors as regulated subjects, and presents evidence to suggest that this project of identity fails to completely enclose its subject, allowing tenant directors to engage in ‘identity work’ that threatens the supposed unity of the board. The paper charts the development of antagonism and political tension in the board rooms of housing companies to present an innovative account of the construction and contestation of identities in housing governance

    Interaction Effects in a One-Dimensional Constriction

    Full text link
    We have investigated the transport properties of one-dimensional (1D) constrictions defined by split-gates in high quality GaAs/AlGaAs heterostructures. In addition to the usual quantized conductance plateaus, the equilibrium conductance shows a structure close to 0.7(2e2/h)0.7(2e^2/h), and in consolidating our previous work [K.~J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996)] this 0.7 structure has been investigated in a wide range of samples as a function of temperature, carrier density, in-plane magnetic field BB_{\parallel} and source-drain voltage VsdV_{sd}. We show that the 0.7 structure is not due to transmission or resonance effects, nor does it arise from the asymmetry of the heterojunction in the growth direction. All the 1D subbands show Zeeman splitting at high BB_{\parallel}, and in the wide channel limit the gg-factor is g0.4\mid g \mid \approx 0.4, close to that of bulk GaAs. As the channel is progressively narrowed we measure an exchange-enhanced gg-factor. The measurements establish that the 0.7 structure is related to spin, and that electron-electron interactions become important for the last few conducting 1D subbands.Comment: 8 pages, 7 figures (accepted in Phys. Rev. B
    corecore