1,022 research outputs found
The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens
The current study assessed the effect of rapeseed variety and oil extraction process on the apparent and standardised ileal digestibility (AID, SID) of crude protein (CP) and amino acids (AA) in rapeseed co-products in broiler chickens. PR46W21 and DK Cabernet rapeseed varieties were de-oiled by soft and standard hexane extraction, producing soft rapeseed meal (SRSM) and rapeseed meal (RSM), respectively. The soft, non-standard hexane extraction method was designed to reduce heat treatment that occurs prior to hexane extraction in order to maximise potential genetic differences in digestibility values of rapeseed co-products. The test meals were incorporated into semi-synthetic diets at a level of 500 g/kg; diets were fed to 14-day old paired chickens (n = 6 pairs) for ten days, when ileal digesta was collected post-slaughter from Meckel’s diverticulum to the ileal-caecal junction. The AID and SID of CP and AA were determined using titanium dioxide as inert dietary marker. The variety PR46W21 showed a greater AID and SID of CP, arginine, leucine, methionine, cysteine, phenylalanine, valine and lysine in RSM compared to the DK Cabernet RSM (p < 0.05). The soft processing increased AID and SID of CP, histidine and lysine in SRSM of PR46W21 and DK Cabernet compared to their RSM counterparts (p < 0.05). An interaction between variety and processing was only observed for AID and SID of tryptophan (p < 0.001), as only in PR46W21 standard processing reduced the tryptophan SID compared to its soft processed counterpart. The data support the view that the selection of rapeseed variety and modification of thermal treatment during the oil extraction might improve nutritional value of rapeseed meals
Spin-dependent thermoelectric transport coefficients in near-perfect quantum wires
Thermoelectric transport coefficients are determined for semiconductor
quantum wires with weak thickness fluctuations. Such systems exhibit anomalies
in conductance near 1/4 and 3/4 of 2e^2/h on the rising edge to the first
conductance plateau, explained by singlet and triplet resonances of conducting
electrons with a single weakly bound electron in the wire [T. Rejec, A. Ramsak,
and J.H. Jefferson, Phys. Rev. B 62, 12985 (2000)]. We extend this work to
study the Seebeck thermopower coefficient and linear thermal conductance within
the framework of the Landauer-Buettiker formalism, which also exhibit anomalous
structures. These features are generic and robust, surviving to temperatures of
a few degrees. It is shown quantitatively how at elevated temperatures thermal
conductance progressively deviates from the Wiedemann-Franz law.Comment: To appear in Phys. Rev. B 2002; 3 figure
The Wiimote on the Playground Phys. Teach. 51, 272 (2013) Helicopter Toy and Lift Estimation Phys. Teach
The detailed design of a robust and inexpensive optical trap system is presented. The system features high-sensitivity back focal plane position detection, mechanically controlled specimen stage movement, and fluorescence imaging to provide broad experimental applications. Three educational experimental modules are described to cover basic concepts in optical trapping and biophysics at a level appropriate for undergraduate students
Lack of correlation of stem cell markers in breast cancer stem cells
BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer
Shot noise reduction in quantum wires with "0.7 structure"
Shot noise reduction in quantum wires is interpreted within the model for the
''0.7 structure'' in the conductance of near perfect quantum wires [T. Rejec,
A. Ramsak, and J.H. Jefferson, Phys. Rev. B 62, 12985 (2000)]. It is shown how
the Fano factor structure is related to the specific structure of the
conductance as a consequence of the singlet--triplet nature of the resonances
with the probability ratio 1:3. An additional feature in the Fano factor,
related to the ''0.25 structure'' in conductance, is predicted.Comment: minor changes; to appear in Phys. Rev. B, Rapid. Comm. (2005
Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide
We have measured the rf magnetoconductivity of unidirectional lateral
superlattices (ULSLs) by detecting the attenuation of microwave through a
coplanar waveguide placed on the surface. ULSL samples with the principal axis
of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave
electric field are examined. For low microwave power, we observe expected
anisotropic behavior of the commensurability oscillations (CO), with CO in
samples S_perp and S_|| dominated by the diffusion and the collisional
contributions, respectively. Amplitude modulation of the Shubnikov-de Haas
oscillations is observed to be more prominent in sample S_||. The difference
between the two samples is washed out with the increase of the microwave power,
letting the diffusion contribution govern the CO in both samples. The failure
of the intended directional selectivity in the conductivity measured with high
microwave power is interpreted in terms of large-angle electron-phonon
scattering.Comment: 8 pages, 5 figure
Conductance anomalies and the extended Anderson model for nearly perfect quantum wires
Anomalies near the conductance threshold of nearly perfect semiconductor
quantum wires are explained in terms of singlet and triplet resonances of
conduction electrons with a single weakly-bound electron in the wire. This is
shown to be a universal effect for a wide range of situations in which the
effective single-electron confinement is weak. The robustness of this generic
behavior is investigated numerically for a wide range of shapes and sizes of
cylindrical wires with a bulge. The dependence on gate voltage, source-drain
voltage and magnetic field is discussed within the framework of an extended
Hubbard model. This model is mapped onto an extended Anderson model, which in
the limit of low temperatures is expected to lead to Kondo resonance physics
and pronounced many-body effects
- …