13 research outputs found

    Radiotherapy trial set-up in the UK: identifying inefficiencies and potential solutions

    Get PDF
    Aims: Radiotherapy clinical trials are integral to the development of new treatments to improve the outcomes of patients with cancer. A collaborative study by the National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group and the National Institute for Health Research was carried out to understand better if and why inefficiencies occur in the set-up of radiotherapy trials in the UK. Materials and methods: Two online surveys collected information on the time taken for UK radiotherapy trials to reach key milestones during set-up and the research support currently being provided to radiotherapy centres to enable efficient clinical trial set-up. Semi-structured interviews with project managers and chief investigators identified better ways of working to improve trial set-up in the future. Results: The timelines for the set-up of 39 UK radiotherapy trials were captured in an online survey showing that the median time from grant approval to trial opening was 600 days (range 169–1172). There were 38 responses from radiotherapy centres to a survey asking about the current support provided for radiotherapy research. Most of these centres have more than one type of staff member dedicated to supporting radiotherapy research. The most frequent barrier to radiotherapy trial set-up identified was lack of physicists' time and lack of time for clinical oncologists to carry out research activities. Four main themes around trial set-up were identified from semi-structured interviews: the importance of communication and building relationships, the previous experience of the chief investigator and clinical trials units, a lack of resources and having the time and personnel required to produce trial documentation and to process trial approval requests. Conclusions: This unique, collaborative project has provided up to date information about the current landscape of trial set-up and research support in the UK and identified several avenues on which to focus future efforts in order to support the excellent radiotherapy trial work carried out across the UK

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    3T3-L1 adipocytes induce dysfunction of MIN6 insulin-secreting cells via multiple pathways mediated by secretory factors in a co-culture system

    No full text
    Abstract Pancreatic b-cell dysfunction is an important pathological change in type 2 diabetes, which is tightly related to obesity. However, the direct role of adipose tissue in b-cell dysfunction has not been well understood. In this study, we examined the effects of 3T3-L1 adipocytes on MIN6 insulin-secreting cells in a co-culture system. MIN6 cells used here kept most of b-cell functions but less sensitive to glucose stimulation. Tolbutamide, the KATP channel blocker, was therefore used to stimulate insulin secretion in this report. MIN6 cells co-cultured with 3T3-L1 adipocytes had significantly reduced intracellular calcium concentration ([Ca2+]i) and lost the ability to secrete insulin in response to tolbutamide, compared to the control cells. 3T3-L1 adipocytes significantly decreased the expression of insulin, glucokinase and Kir6.2 genes but increased the expression of uncoupling protein-2 (UCP-2) in MIN6 cells after one week of co-culture, as measured by semi-quantitative RT-PCR. 3T3-L1 adipocyte-conditioned medium also significantly decreased insulin secretion and the expression of insulin, glucokinase and Kir6.2 genes in MIN6 cells. The conditioned medium also reduced tyrosine kinase activity in MIN6 cells. The inhibitor of protein tyrosine kinase, genistein, decreased the expression of glucokinase and Kir6.2 in MIN6 cells, while two free fatty acids, oleic acid and linoleic acids, were found to increase UCP-2 expression. The present study demonstrates that 3T3-L1 adipocytes directly impair insulin secretion and the expression of important genes in MIN6 cells. The effects of 3T3-L1 adipocytes on MIN6 cells are ascribed to secreted bioactive factors and may be mediated via multiple pathways, which include the upregulation of UCP-2 expression via free fatty acids, and downregulation of glucokinase and Kir6.2 expression via decreasing protein tyrosine kinase activity

    The effects of strengthening patent rights on firms engaged in cumulative innovation: Insights from the semiconductor industry

    No full text

    Genes: Interactions with Language on Three Levels—Inter-Individual Variation, Historical Correlations and Genetic Biasing

    No full text
    The complex inter-relationships between genetics and linguistics encompass all four scales highlighted by the contributions to this book and, together with cultural transmission, the genetics of language holds the promise to offer a unitary understanding of this fascinating phenomenon. There are inter-individual differences in genetic makeup which contribute to the obvious fact that we are not identical in the way we understand and use language and, by studying them, we will be able to both better treat and enhance ourselves. There are correlations between the genetic configuration of human groups and their languages, reflecting the historical processes shaping them, and there also seem to exist genes which can influence some characteristics of language, biasing it towards or against certain states by altering the way language is transmitted across generations. Besides the joys of pure knowledge, the understanding of these three aspects of genetics relevant to language will potentially trigger advances in medicine, linguistics, psychology or the understanding of our own past and, last but not least, a profound change in the way we regard one of the emblems of being human: our capacity for language

    Transitions in Understanding of RNA Viruses: A Historical Perspective

    No full text

    Beneficial Effects of N-Acetylcysteine on Acetic Acid-Induced Colitis in Rats

    No full text
    corecore