8 research outputs found

    Comparative Study With Propensity Score Matching Analysis of Two Different Methods of Transection During Hemi-Right Hepatectomy: Ultracision Harmonic Scalpel Versus Cavitron Ultrasonic Surgical Aspirator

    No full text
    BACKGROUND: Several devices are available for liver parenchyma transection (LPT). The aim of this study was to compare the Ultracision Harmonic scalpel (UHS) with the Cavitron Ultrasonic Surgical Aspirator (CUSA) among patients who underwent hemi-right hepatectomies (RH) to homogenize transection areas. METHODS: From September 2012 to June 2015, 24 patients who underwent the UHS surgery approach were matched with 24 patients who underwent the CUSA transection procedure for RH using propensity score matching. RESULTS: Total operative time (TOT) was shorter in the UHS group, 240 minutes (range 172.5-298.8) versus 330 minutes (range 270-400) in the CUSA group ( P = .0002). The occurrence of hepatopathy (odds ratio = 17; 95% confidence interval = 1.02-230) and the use of the CUSA device (odds ratio = 8; 95% confidence interval = 0.98-77) were associated with a TOT exceeding 300 minutes in multivariate analysis ( P = .05). CONCLUSIONS: The UHS is a safe and effective method of LPT as compared to the use of the CUSA system. TOT is statistically decreased

    FRIPON: A worldwide network to track incoming meteoroids

    No full text
    Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106km2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < -5; meteoroid size ≥∼1 cm) amounts to 1250/yr/106km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project

    FRIPON: A worldwide network to track incoming meteoroids

    No full text
    Context. Until recently, camera networks designed for monitoring fireballs worldwide were not fully automated, implying that in case of a meteorite fall, the recovery campaign was rarely immediate. This was an important limiting factor as the most fragile - hence precious - meteorites must be recovered rapidly to avoid their alteration. Aims. The Fireball Recovery and InterPlanetary Observation Network (FRIPON) scientific project was designed to overcome this limitation. This network comprises a fully automated camera and radio network deployed over a significant fraction of western Europe and a small fraction of Canada. As of today, it consists of 150 cameras and 25 European radio receivers and covers an area of about 1.5 × 106km2. Methods. The FRIPON network, fully operational since 2018, has been monitoring meteoroid entries since 2016, thereby allowing the characterization of their dynamical and physical properties. In addition, the level of automation of the network makes it possible to trigger a meteorite recovery campaign only a few hours after it reaches the surface of the Earth. Recovery campaigns are only organized for meteorites with final masses estimated of at least 500 g, which is about one event per year in France. No recovery campaign is organized in the case of smaller final masses on the order of 50 to 100 g, which happens about three times a year; instead, the information is delivered to the local media so that it can reach the inhabitants living in the vicinity of the fall. Results. Nearly 4000 meteoroids have been detected so far and characterized by FRIPON. The distribution of their orbits appears to be bimodal, with a cometary population and a main belt population. Sporadic meteors amount to about 55% of all meteors. A first estimate of the absolute meteoroid flux (mag < -5; meteoroid size ≥∼1 cm) amounts to 1250/yr/106km2. This value is compatible with previous estimates. Finally, the first meteorite was recovered in Italy (Cavezzo, January 2020) thanks to the PRISMA network, a component of the FRIPON science project
    corecore