1,557 research outputs found

    Spectropolarimetry of the borderline Seyfert 1 galaxy ESO 323-G077

    Full text link
    We report the detection of high linear polarization in the bright Seyfert 1 galaxy ESO 323-G077. Based on optical spectropolarimetry with FORS1 at the VLT we find a continuum polarization which ranges from 2.2 % at 8300A to 7.5 % at 3600A. Similar amounts of linear polarization are found for the broad emission lines, while the narrow lines are not polarized. The position angle of the polarization is independent of the wavelength and found to be perpendicular to the orientation of the extended [OIII] emission cone of this galaxy. Within the standard model of Seyfert nuclei the observations can be well understood assuming that this AGN is observed at an inclination angle where the nucleus is partially obscured and seen mainly indirectly in the light scattered by dust clouds within or above the torus and the illuminated inner edge of the dust torus itself. Hence we conclude that ESO 323-G077 is a borderline Seyfert 1 galaxy which can provide important information on the geometric properties of active nuclei

    Quantum confinement corrections to the capacitance of gated one-dimensional nanostructures

    Get PDF
    With the help of a multi-configurational Green's function approach we simulate single-electron Coulomb charging effects in gated ultimately scaled nanostructures which are beyond the scope of a selfconsistent mean-field description. From the simulated Coulomb-blockade characteristics we derive effective system capacitances and demonstrate how quantum confinement effects give rise to corrections. Such deviations are crucial for the interpretation of experimentally determined capacitances and the extraction of application-relevant system parameters

    Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube

    Full text link
    This letter reports measurements of microwave (up to 4.5 GHz) detection in metallic single-walled carbon nanotubes. The measured voltage responsivity was found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz. The detection mechanism can be explained based on standard microwave detector theory and the nonlinearity of the DC IV-curve. We discuss the possible causes of this nonlinearity. While the frequency response is limited by circuit parasitics in this measurement, we discuss evidence that indicates that the effect is much faster and that applications of carbon nanotubes as terahertz detectors are feasible

    On the Performance of Single-Gated Ultrathin-Body SOI Schottky-Barrier MOSFETs

    Get PDF
    The authors study the dependence of the performance of silicon-on-insulator (SOI) Schottky-barrier (SB) MOSFETs on the SOI body thickness and show a performance improvement for decreasing SOI thickness. The inverse subthreshold slopes S extracted from the experiments are compared with simulations and an analytical approximation. Excellent agreement between experiment, simulation, and analytical approximation is found, which shows that S scales approximately as the square root of the gate oxide and the SOI thickness. In addition, the authors study the impact of the SOI thickness on the variation of the threshold voltage V-th of SOI SB-MOSFETs and find a non-monotonic behavior of V-th. The results show that to avoid large threshold voltage variations and achieve high-performance devices, the gate oxide thickness should be as small as possible, and the SOI thickness should be similar to 3 nm

    A Fully Tunable Single-Walled Carbon Nanotube Diode

    Full text link
    We demonstrate a fully tunable diode structure utilizing a fully suspended single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward bias can be continuously tuned up to 4.3 V by controlling gate voltages, which is ~6 times the nanotube bandgap energy. Furthermore, the same device design can be configured into a backward diode by tuning the band-to-band tunneling current with gate voltages. A nanotube backward diode is demonstrated for the first time with nonlinearity exceeding the ideal diode. These results suggest that a tunable nanotube diode can be a unique building block for developing next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure

    High Redshift Quasars and Star Formation in the Early Universe

    Full text link
    In order to derive information on the star formation history in the early universe we observed 6 high-redshift (z=3.4) quasars in the near-infrared to measure the relative iron and \mgii emission strengths. A detailed comparison of the resulting spectra with those of low-redshift quasars show essentially the same FeII/MgII emission ratios and very similar continuum and line spectral properties, indicating a lack of evolution of the relative iron to magnesium abundance of the gas since z=3.4 in bright quasars. On the basis of current chemical evolution scenarios of galaxies, where magnesium is produced in massive stars ending in type II SNe, while iron is formed predominantly in SNe of type Ia with a delay of ~1 Gyr and assuming as cosmological parameters H_o = 72 km/s Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7$, we conclude that major star formation activity in the host galaxies of our z=3.4 quasars must have started already at an epoch corresponding to z_f ~= 10, when the age of the universe was less than 0.5 Gyrs.Comment: 29 pages, 5 figures, ApJ in pres

    FeII/MgII Emission Line Ratio in High Redshift Quasars

    Get PDF
    We present results of the analysis of near infrared spectroscopic observations of 6 high-redshift quasars (z > 4), emphasizing the measurement of the ultraviolet FeII/MgII emission line strength in order to estimate the beginning of intense star formation in the early universe. To investigate the evolution of the FeII/MgII ratio over a wider range in cosmic time, we measured this ratio for composite quasar spectra which cover a redshift range of 0 < z < 5 with nearly constant luminosity, as well as for those which span ~6 orders of magnitude in luminosity. A detailed comparison of the high-redshift quasar spectra with those of low-redshift quasars with comparable luminosity shows essentially the same FeII/MgII emission ratios and very similar continuum and line spectral properties, i.e. a lack of evolution of the relative iron to magnesium abundance of the gas in bright quasars since z=5. Current nucleosynthesis and stellar evolution models predict that alpha-elements like magnesium are produced in massive stars ending in type II SNe, while iron is formed predominantly in SNe of type Ia with intermediate mass progenitors. This results in an iron enrichment delay of 0.2 to 0.6 Gyr. We conclude that intense star formation activity in the host galaxies of z>4 quasars must have started already at an epoch corresponding to z_f = 6 to 9, when the age of the universe was ~0.5 Gyr (H_o = 72 km/s/Mpc, Omega_M = 0.3, Omega_Lambda = 0.7). This epoch corresponds well to the re-ionization era of the universe.Comment: 22 pages, 5 figures, accepted for publication in ApJ (vol.596, Oct03
    corecore