1,557 research outputs found
Spectropolarimetry of the borderline Seyfert 1 galaxy ESO 323-G077
We report the detection of high linear polarization in the bright Seyfert 1
galaxy ESO 323-G077. Based on optical spectropolarimetry with FORS1 at the VLT
we find a continuum polarization which ranges from 2.2 % at 8300A to 7.5 % at
3600A. Similar amounts of linear polarization are found for the broad emission
lines, while the narrow lines are not polarized. The position angle of the
polarization is independent of the wavelength and found to be perpendicular to
the orientation of the extended [OIII] emission cone of this galaxy. Within the
standard model of Seyfert nuclei the observations can be well understood
assuming that this AGN is observed at an inclination angle where the nucleus is
partially obscured and seen mainly indirectly in the light scattered by dust
clouds within or above the torus and the illuminated inner edge of the dust
torus itself. Hence we conclude that ESO 323-G077 is a borderline Seyfert 1
galaxy which can provide important information on the geometric properties of
active nuclei
Quantum confinement corrections to the capacitance of gated one-dimensional nanostructures
With the help of a multi-configurational Green's function approach we
simulate single-electron Coulomb charging effects in gated ultimately scaled
nanostructures which are beyond the scope of a selfconsistent mean-field
description. From the simulated Coulomb-blockade characteristics we derive
effective system capacitances and demonstrate how quantum confinement effects
give rise to corrections. Such deviations are crucial for the interpretation of
experimentally determined capacitances and the extraction of
application-relevant system parameters
Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube
This letter reports measurements of microwave (up to 4.5 GHz) detection in
metallic single-walled carbon nanotubes. The measured voltage responsivity was
found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz.
The detection mechanism can be explained based on standard microwave detector
theory and the nonlinearity of the DC IV-curve. We discuss the possible causes
of this nonlinearity. While the frequency response is limited by circuit
parasitics in this measurement, we discuss evidence that indicates that the
effect is much faster and that applications of carbon nanotubes as terahertz
detectors are feasible
On the Performance of Single-Gated Ultrathin-Body SOI Schottky-Barrier MOSFETs
The authors study the dependence of the performance of silicon-on-insulator (SOI) Schottky-barrier (SB) MOSFETs on the SOI body thickness and show a performance improvement for decreasing SOI thickness. The inverse subthreshold slopes S extracted from the experiments are compared with simulations and an analytical approximation. Excellent agreement between experiment, simulation, and analytical approximation is found, which shows that S scales approximately as the square root of the gate oxide and the SOI thickness. In addition, the authors study the impact of the SOI thickness on the variation of the threshold voltage V-th of SOI SB-MOSFETs and find a non-monotonic behavior of V-th. The results show that to avoid large threshold voltage variations and achieve high-performance devices, the gate oxide thickness should be as small as possible, and the SOI thickness should be similar to 3 nm
A Fully Tunable Single-Walled Carbon Nanotube Diode
We demonstrate a fully tunable diode structure utilizing a fully suspended
single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward
bias can be continuously tuned up to 4.3 V by controlling gate voltages, which
is ~6 times the nanotube bandgap energy. Furthermore, the same device design
can be configured into a backward diode by tuning the band-to-band tunneling
current with gate voltages. A nanotube backward diode is demonstrated for the
first time with nonlinearity exceeding the ideal diode. These results suggest
that a tunable nanotube diode can be a unique building block for developing
next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure
High Redshift Quasars and Star Formation in the Early Universe
In order to derive information on the star formation history in the early
universe we observed 6 high-redshift (z=3.4) quasars in the near-infrared to
measure the relative iron and \mgii emission strengths. A detailed comparison
of the resulting spectra with those of low-redshift quasars show essentially
the same FeII/MgII emission ratios and very similar continuum and line spectral
properties, indicating a lack of evolution of the relative iron to magnesium
abundance of the gas since z=3.4 in bright quasars. On the basis of current
chemical evolution scenarios of galaxies, where magnesium is produced in
massive stars ending in type II SNe, while iron is formed predominantly in SNe
of type Ia with a delay of ~1 Gyr and assuming as cosmological parameters H_o =
72 km/s Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7$, we conclude that major
star formation activity in the host galaxies of our z=3.4 quasars must have
started already at an epoch corresponding to z_f ~= 10, when the age of the
universe was less than 0.5 Gyrs.Comment: 29 pages, 5 figures, ApJ in pres
FeII/MgII Emission Line Ratio in High Redshift Quasars
We present results of the analysis of near infrared spectroscopic
observations of 6 high-redshift quasars (z > 4), emphasizing the measurement of
the ultraviolet FeII/MgII emission line strength in order to estimate the
beginning of intense star formation in the early universe. To investigate the
evolution of the FeII/MgII ratio over a wider range in cosmic time, we measured
this ratio for composite quasar spectra which cover a redshift range of 0 < z <
5 with nearly constant luminosity, as well as for those which span ~6 orders of
magnitude in luminosity. A detailed comparison of the high-redshift quasar
spectra with those of low-redshift quasars with comparable luminosity shows
essentially the same FeII/MgII emission ratios and very similar continuum and
line spectral properties, i.e. a lack of evolution of the relative iron to
magnesium abundance of the gas in bright quasars since z=5. Current
nucleosynthesis and stellar evolution models predict that alpha-elements like
magnesium are produced in massive stars ending in type II SNe, while iron is
formed predominantly in SNe of type Ia with intermediate mass progenitors. This
results in an iron enrichment delay of 0.2 to 0.6 Gyr. We conclude that intense
star formation activity in the host galaxies of z>4 quasars must have started
already at an epoch corresponding to z_f = 6 to 9, when the age of the universe
was ~0.5 Gyr (H_o = 72 km/s/Mpc, Omega_M = 0.3, Omega_Lambda = 0.7). This epoch
corresponds well to the re-ionization era of the universe.Comment: 22 pages, 5 figures, accepted for publication in ApJ (vol.596, Oct03
- …