16 research outputs found

    Rapid Effects of Hearing Song on Catecholaminergic Activity in the Songbird Auditory Pathway

    Get PDF
    Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses

    Own Song Selectivity in the Songbird Auditory Pathway: Suppression by Norepinephrine

    Get PDF
    Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in bird's own song selectivity, a property thought to be important for auditory feedback processes required for song learning and maintenance.Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region.The level of norepinephrine throughout the telencephalon is known to be high in alert birds and low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor circuitry for vocal learning and maintenance

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The effect of auditory distractors on song discrimination in male canaries (Serinus canaria)

    Full text link
    Male songbirds such as canaries produce complex learned vocalizations that are used in the context of mate attraction and territory defense. Successful mate attraction or territorial defense requires that a bird be able to recognize individuals based on their vocal performance and identify these songs in a noisy background. In order to learn more about how birds are able to solve this problem, we investigated, with a two-alternative choice procedure, the ability of adult male canaries to discriminate between conspecific song segments from two different birds and to maintain this discrimination when conspecific songs are superimposed with a variety of distractors. The results indicate that male canaries have the ability to discriminate, with a high level of accuracy song segments produced by two different conspecific birds. Song discrimination was partially maintained when the stimuli were masked by auditory distractors, but the accuracy of the discrimination progressively declined as a function of the number of masking distractors. The type of distractor used in the experiments (other conspecific songs or different types of artificial white noise) did not markedly affect the rate of deterioration of the song discrimination. These data indicate that adult male canaries have the perceptual abilities to discriminate and selectively attend to one ongoing sound that occurs simultaneously with one or more other sounds. The administration of a noradrenergic neurotoxin did not impair markedly the discrimination learning abilities although the number of subjects tested was too small to allow any firm conclusion. In these conditions, however, the noradrenergic lesion significantly increased the number failures to respond in the discrimination learning task suggesting a role, in canaries, of the noradrenergic system in some attentional processes underlying song learning and processing. (c) 2005 Elsevier B.V. All rights reserved
    corecore