1,952 research outputs found

    Proposal for a Topological Plasmon Spin Rectifier

    Full text link
    We propose a device in which the spin-polarized AC plasmon mode in the surface state of a topological insulator nanostructure induces a static spin accumulation in a resonant, normal metal structure coupled to it. Using a finite-difference time-domain model, we simulate this spin-pump mechanism with drift, diffusion, relaxation, and precession in a magnetic field. This optically-driven system can serve as a DC "spin battery" for spintronic devices.Comment: Eq. 1 corrected; Figs 3 and 4 update

    Restorative Justice-Informed Moral Acquaintance: Resolving the Dual Role Problem in Correctional and Forensic Practice

    Get PDF
    The issue of dual roles within forensic and correctional fields has typically been conceptualized as dissonance—experienced by practitioners— when attempting to adhere to the conflicting ethical requirements associated with client well-being and community protection. In this paper, we argue that the dual role problem should be conceptualized more broadly; to incorporate the relationship between the offender and their victim. We also propose that Restorative Justice (RJ) is able to provide a preliminary ethical framework to deal with this common ethical oversight. Furthermore, we unite the RJ framework with that of Ward’s (2013) moral acquaintance model to provide a more powerful approach—RJ informed moral acquaintance—aimed at addressing the ethical challenges faced by practitioners within forensic and correctional roles

    The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group

    Get PDF
    While the properties of the Kondo model in equilibrium are very well understood, much less is known for Kondo systems out of equilibrium. We study the properties of a quantum dot in the Kondo regime, when a large bias voltage V and/or a large magnetic field B is applied. Using the perturbative renormalization group generalized to stationary nonequilibrium situations, we calculate renormalized couplings, keeping their important energy dependence. We show that in a magnetic field the spin occupation of the quantum dot is non-thermal, being controlled by V and B in a complex way to be calculated by solving a quantum Boltzmann equation. We find that the well-known suppression of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic dephasing processes induced by the current through the dot. We calculate the corresponding decoherence rate, which serves to cut off the RG flow usually well inside the perturbative regime (with possible exceptions). As a consequence, the differential conductance, the local magnetization, the spin relaxation rates and the local spectral function may be calculated for large V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery", some typos correcte

    Suppression of Kondo effect in a quantum dot by external irradiation

    Full text link
    We demonstrate that the external irradiation brings decoherence in the spin states of the quantum dot. This effect cuts off the Kondo anomaly in conductance even at zero temperature. We evaluate the dependence of the DC conductance in the Kondo regime on the power of irradiation, this dependence being determined by the decoherence.Comment: 4 pages, 1 figur

    Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory

    Get PDF
    Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the local magnetization and the differential conductance, which are characteristic of the Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in the conductance, and their form calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure

    Kondo Effect in Electromigrated Gold Break Junctions

    Full text link
    We present gate-dependent transport measurements of Kondo impurities in bare gold break junctions, generated with high yield using an electromigration process that is actively controlled. Thirty percent of measured devices show zero-bias conductance peaks. Temperature dependence suggests Kondo temperatures \~7K. The peak splitting in magnetic field is consistent with theoretical predictions for g=2, though in many devices the splitting is offset from 2guB by a fixed energy. The Kondo resonances observed here may be due to atomic-scale metallic grains formed during electromigration.Comment: 5 pages, 3 figure

    Observation of band structure and density of states effects in Co-based magnetic tunnel junctions

    Get PDF
    Utilizing Co/Al2_2O3_3/Co magnetic tunnel junctions (MTJs) with Co electrodes of different crystalline phases, a clear relationship between electrode structure and junction transport properties is presented. For junctions with one fcc(111) textured and one polycrystalline (poly-phase and poly-directional) Co electrode, a strong asymmetry is observed in the magnetotransport properties, while when both electrodes are polycrystalline the magnetotransport is essentially symmetric. These observations are successfully explained within a model based on ballistic tunneling between the calculated band structures (DOS) of fcc-Co and hcp-Co.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Conduction through a quantum dot near a singlet-triplet transition

    Full text link
    Kondo effect in the vicinity of a singlet-triplet transition in a vertical quantum dot is considered. This system is shown to map onto a special version of the two-impurity Kondo model. At any value of the control parameter, the system has a Fermi-liquid ground state. Explicit expressions for the linear conductance as a function of the control parameter and temperature TT are obtained. At T=0, the conductance reaches the unitary limit 4e2/h\sim 4e^2/h at the triplet side of the transition, and decreases with the increasing distance to the transition at the singlet side. At finite temperature, the conductance exhibits a peak near the transition point

    Topological insulator quantum dot with tunable barriers

    Full text link
    Thin (6-7 quintuple layer) topological insulator Bi2Se3 quantum dot devices are demonstrated using ultrathin (2~4 quintuple layer) Bi2Se3 regions to realize semiconducting barriers which may be tuned from Ohmic to tunneling conduction via gate voltage. Transport spectroscopy shows Coulomb blockade with large charging energy >5 meV, with additional features implying excited states

    Addressing the Ethical, Legal, and Social Issues Raised by Voting by Persons with Dementia

    Get PDF
    This article addresses an emerging policy problem in the United States participation in the electoral process by citizens with dementia. At present, health care professionals, family caregivers, and long-term care staff lack adequate guidance to decide whether individuals with dementia should be precluded from or assisted in casting a ballot. Voting by persons with dementia raises a series of important questions about the autonomy of individuals with dementia, the integrity of the electoral process, and the prevention of fraud. Three subsidiary issues warrant special attention: development of a method to assess capacity to vote; identification of appropriate kinds of assistance to enable persons with cognitive impairment to vote; and formulation of uniform and workable policies for voting in long-term care settings. In some instances, extrapolation from existing policies and research permits reasonable recommendations to guide policy and practice. However, in other instances, additional research is necessary
    corecore