3,497 research outputs found

    Calculation of the Self-energy of Open Quantum Systems

    Full text link
    We propose an easy method of calculating the self-energy of semi-infinite leads attached to a mesoscopic system.Comment: 6 pages, 2 figures, published in J. Phys. Soc. Jp

    Airframe Noise Simulations of a Full-Scale Aircraft

    Get PDF
    Computational results for a full-scale simulation of a Gulfstream G-III aircraft are presented. In support of a NASA airframe noise flight test campaign, Exa Corporations lattice Boltzmann PowerFLOW solver was used to perform time-accurate simulations of the flow around a highly detailed, full-scale aircraft model. Free-air boundary conditions were used at a Mach number of 0.23 and a Reynolds number of 10.5 10(exp 6) based on mean aerodynamic chord. This paper documents the simulation campaign for the baseline aircraft configuration at several flight conditions, including multiple flap deflections and main landing gear deployed or retracted. The high-fidelity, synthetic data were post-processed using a Ffowcs-Williams and Hawkings integral approach to estimate farfield acoustic behavior, with pressures on the model solid surface or a permeable surface enveloping the acoustic near field used as input. The numerical approach, simulation attributes, and the effects of grid resolution, gear deployment, and multiple flap deflections, are discussed as well

    Structural and functional Alterations of FLT3 in Acute Myeloid Leukemia

    Get PDF
    Hematopoiesis is highly regulated through cytokine-induced stimulation of multiple signal transduction pathways in order to mediate appropriate differentiation and proliferation of specific progenitor populations. Ligand-induced stimulation of the FMS-like tyrosine kinase 3 (FLT3) leads to activation of multiple downstream effector pathways resulting in differentiation and proliferation of specific progenitor cell populations. Genomic alterations of the FLT3 gene leads to autonomous receptor activation, dysregulation of FLT3 signal transduction pathways, contributes to myeloid pathogenesis, and have been linked to response to therapy and clinical outcome. Exploring the mechanisms by which these FLT3 alterations lead to dysregulated proliferation would provide a better understanding of the molecular pathogenesis of AML and may provide insights into potential therapeutic interventions

    Anti-T Cell Antibodies as Part of the Preparative Regimen in Hematopoietic Cell Transplantation—A Debate

    Get PDF

    Unlimited Medical Liability?

    Get PDF

    Simulations of a Full-Scale Aircraft with Installed Airframe Noise Reduction Technologies

    Get PDF
    Computational results are presented for a high-fidelity, full-scale, full-span Gulfstream G-III aircraft model equipped with flap and main landing gear (MLG) noise reduction technologies. The simulations, which were conducted in support of a NASA airframe noise flight test campaign of the same technologies, use the lattice Boltzmann solver PowerFLOW to capture time-accurate flow data with sound propagation to the far field accomplished using a Ffowcs-Williams and Hawkings (FWH) acoustic analogy approach. The aerodynamic and aeroacoustic behavior of the aircraft were investigated in the approach configuration with combinations of flap and landing gear deployments. The simulated flap concept is an Adaptive Compliant Trailing Edge (ACTE) flap that replaces the Fowler flap system on the G-III aircraft. The simulated MLG noise reduction concept is comprised of porous fairings and a collection of other smaller fairings fitted around the flow-facing components. Using the Fowler flap results as a reference, comparisons are presented on the noise reduction effectiveness of the ACTE flap system. Investigations were made on the effects of using the porous fairings and ACTE flap as noise reduction concepts in tandem. The ACTE flap was found to reduce the total airframe noise level at all flap deflection angles when compared to the Fowler flap equipped model. As anticipated, a reduction in aerodynamic performance was also found when the ACTE flap system was used. The MLG fairings were shown to further reduce the total airframe noise level of the G-III

    Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory

    Get PDF
    Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the local magnetization and the differential conductance, which are characteristic of the Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in the conductance, and their form calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure

    Suppression of Kondo effect in a quantum dot by external irradiation

    Full text link
    We demonstrate that the external irradiation brings decoherence in the spin states of the quantum dot. This effect cuts off the Kondo anomaly in conductance even at zero temperature. We evaluate the dependence of the DC conductance in the Kondo regime on the power of irradiation, this dependence being determined by the decoherence.Comment: 4 pages, 1 figur

    The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group

    Get PDF
    While the properties of the Kondo model in equilibrium are very well understood, much less is known for Kondo systems out of equilibrium. We study the properties of a quantum dot in the Kondo regime, when a large bias voltage V and/or a large magnetic field B is applied. Using the perturbative renormalization group generalized to stationary nonequilibrium situations, we calculate renormalized couplings, keeping their important energy dependence. We show that in a magnetic field the spin occupation of the quantum dot is non-thermal, being controlled by V and B in a complex way to be calculated by solving a quantum Boltzmann equation. We find that the well-known suppression of the Kondo effect at finite V>>T_K (Kondo temperature) is caused by inelastic dephasing processes induced by the current through the dot. We calculate the corresponding decoherence rate, which serves to cut off the RG flow usually well inside the perturbative regime (with possible exceptions). As a consequence, the differential conductance, the local magnetization, the spin relaxation rates and the local spectral function may be calculated for large V,B >> T_K in a controlled way.Comment: 9 pages, invited paper for a special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery", some typos correcte
    corecore