125 research outputs found

    Thermal stability of hepatitis E virus assessed by a molecular biological approach

    Get PDF
    Background: Hepatitis E virus (HEV) is a pathogen of emerging concern in industrialized countries. The consumption of wild boar meat has been identified as one risk factor for autochthonous HEV infections. Only limited information is available about thermal stability of HEV, mainly due to the lack of rapid and efficient cell culture systems for measurement of HEV infectivity. Methods: A molecular biological method was implemented in order to distinguish disassembled from intact viral particles using RNase treatment followed by quantitative real-time RT-PCR. The method was applied to a wild boar liver suspension containing HEV genotype 3. Results: Time-course analyses indicated that the decline of protected RNA could be described by a biphasic model with an initial decrease followed by a stationary phase. The stationary phase was reached after 1 hour at 4°C, 3 days at 22°C and 7 days at 37°C with log reductions of 0.34, 0.45 and 1.24, respectively. Protected RNA was detectable until the end of the experiments at day 50 or 70. Heat exposure for 1 minute resulted in a log reduction of 0.48 at 70°C and increased with higher temperatures to 3.67 at 95°C. Although HEV infectivity titration by inoculation of the liver suspension onto three cell lines did not succeed, the results of the RNase-based method are in accordance with published cell culture-based data. Conclusions: Measurement of intact viral particles using the RNase-based method may provide data on the stability of RNA viruses when cell culture-based infectivity titrations are not efficient or not available. The method enables processing of large sample numbers and may be suitable to estimate stability of HEV in different types of food

    Viral promoters can initiate expression of toxin genes introduced into Escherichia coli

    Get PDF
    BACKGROUND: The expression of recombinant proteins in eukaryotic cells requires the fusion of the coding region to a promoter functional in the eukaryotic cell line. Viral promoters are very often used for this purpose. The preceding cloning procedures are usually performed in Escherichia coli and it is therefore of interest if the foreign promoter results in an expression of the gene in bacteria. In the case molecules toxic for humans are to be expressed, this knowledge is indispensable for the specification of safety measures. RESULTS: We selected five frequently used viral promoters and quantified their activity in E. coli with a reporter system. Only the promoter from the thymidine kinase gene from HSV1 showed no activity, while the polyhedrin promoter from baculovirus, the early immediate CMV promoter, the early SV40 promoter and the 5' LTR promoter from HIV-1 directed gene expression in E. coli. The determination of transcription start sites in the immediate early CMV promoter and the polyhedrin promoter confirmed the existence of bacterial -10 and -35 consensus sequences. The importance of this heterologous gene expression for safety considerations was further supported by analysing fusions between the aforementioned promoters and a promoter-less cytotoxin gene. CONCLUSION: According to our results a high percentage of viral promoters have the ability of initiating gene expression in E. coli. The degree of such heterologous gene expression can be sufficient for the expression of toxin genes and must therefore be considered when defining safety measures for the handling of corresponding genetically modified organisms

    Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.

    Get PDF
    Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment

    Zero Field Assembly of Long Magnetic Dipolar Chains in 2D Polymer Nanocomposite Films

    Full text link
    The existence of magnetic dipolar nanoparticle chains at zero field has been predicted theoretically for decades, but these structures are rarely observed experimentally. A prerequisite is a permanent magnetic moment on the particles forming the chain. Here we report on the observation of magnetic dipolar chains of spherical iron oxide nanoparticles with a diameter of \SI{12.8}{\nano\meter}. The nanoparticles are embedded in an ultrathin polymer film. Due to the high viscosity of the polymer matrix, the dominating aggregation mechanism is driven by dipolar interactions. Smaller iron oxide nanoparticles (\SI{9.4}{\nano\meter}) show no permanent magnetic moment and do not form chains but compact aggregates. Mixed monolayers of different iron oxide nanoparticles and polymer at the air-water interface are characterized by Langmuir isotherms and in-situ X-ray reflectometry (XRR). The combination of the particles with a polymer leads to a stable polymer nanocomposite film at the air-water interface. XRR experiments show that nanoparticles are immersed in a thin polymer matrix of \SI{3}{\nano\meter}. Using atomic force microscopy (AFM) on Langmuir-Blodgett films, we measure the lateral distribution of particles in the film. An analysis of single structures within transferred films results in fractal dimensions that are in excellent agreement with 2D simulations.Comment: 34 pages, 9 figures, electronic supporting information, TU Darmstad

    Salmonella in pork – Lessons to be learned from salmonella control in poultry

    Get PDF
    Based on Reg. (EC) No. 2160/2003, programs to control Salmonella in primary production in poultry have been decided and implemented in Europe. This paper addresses the question of the efficacy of these programs to reduce the incidence of salmonellosis in humans in Germany

    Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis E is an increasingly diagnosed human disease in Central Europe. Besides domestic pigs, in which hepatitis E virus (HEV) infection is highly prevalent, wild boars have been identified as a possible source of human infection. In order to assess the distribution of HEV in the wild boar population of Germany, we tested liver samples originating from different geographical regions for the presence of the HEV genome and compared the detected sequences to animal and human HEV strains.</p> <p>Results</p> <p>A total of 148 wild boar liver samples were tested using real-time RT-PCR resulting in an average HEV detection rate of 14.9% (95% CI 9.6–21.6). HEV was detected in all age classes and all geographical regions. However, the prevalence of HEV infection was significantly higher in rural as compared to urban regions (p < 0.001). Sequencing of the PCR products indicated a high degree of heterogenicity of the detected viruses within genotype 3 and a grouping according to their geographical origin. The whole genome sequence of an HEV isolate (wbGER27) detected in many wild boars in the federal state of Brandenburg was determined. It belongs to genotype 3i and shows 97.9% nucleotide sequence identity to a partial sequence derived from a human hepatitis E patient from Germany.</p> <p>Conclusion</p> <p>The results indicate that wild boars have to be considered as a reservoir for HEV in Germany and that a risk of HEV transmission to humans is present in rural as well as urban regions.</p

    Zero Field Assembly of Long Magnetic Dipolar Chains in 2D Polymer Nanocomposite Films

    Get PDF
    The existence of magnetic dipolar nanoparticle chains at zero field has been predicted theoretically for decades, but these structures are rarely observed experimentally. A prerequisite is a permanent magnetic moment on the particles forming the chain. Here we report on the observation of magnetic dipolar chains of spherical iron oxide nanoparticles with a diameter of \SI{12.8}{\nano\meter}. The nanoparticles are embedded in an ultrathin polymer film. Due to the high viscosity of the polymer matrix, the dominating aggregation mechanism is driven by dipolar interactions. Smaller iron oxide nanoparticles (\SI{9.4}{\nano\meter}) show no permanent magnetic moment and do not form chains but compact aggregates. Mixed monolayers of different iron oxide nanoparticles and polymer at the air-water interface are characterized by Langmuir isotherms and in-situ X-ray reflectometry (XRR). The combination of the particles with a polymer leads to a stable polymer nanocomposite film at the air-water interface. XRR experiments show that nanoparticles are immersed in a thin polymer matrix of \SI{3}{\nano\meter}. Using atomic force microscopy (AFM) on Langmuir-Blodgett films, we measure the lateral distribution of particles in the film. An analysis of single structures within transferred films results in fractal dimensions that are in excellent agreement with 2D simulations.Comment: 34 pages, 9 figures, electronic supporting information, TU Darmstad

    Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Get PDF
    BACKGROUND: Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase) gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. RESULTS: To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 10(7 )starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110) and seemed to be very high in some isolates. CONCLUSION: We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly sensitive and efficiently reproducible. Cell numbers in dilutions of a C. burnetii isolate were reliably quantified. PCR quantification suggested a high variability of the number of IS1111 elements in different C. burnetii isolates, which may be useful for further phylogenetic studies
    • …
    corecore