7 research outputs found

    GvHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells

    No full text
    Myeloid-derived suppressor cells (MDSC) are a naturally occurring immune regulatory population associated with inhibition of ongoing inflammatory responses. In vitro generation of MDSC from bone marrow have been shown to enhance survival in an acute model of lethal graft-versus-host disease (GvHD). However, donor MDSC infusion only partially ameliorates GvHD lethality. In order to improve the potential therapeutic benefit and ultimately survival outcomes we set out to investigate the fate of MDSC after transfer in the setting of acute GvHD (aGvHD). MDSC transferred to lethally irradiated recipients of allogeneic donor hematopoietic grafts are exposed to an intense inflammatory environment associated with aGvHD, which we now show directly undermines their suppressive capacity. Under conditioning regimen and GvHD inflammatory settings, MDSC rapidly lose suppressor function and their potential to inhibit GvHD lethality, which is associated with their induced conversion towards a mature inflammasome-activated state. We find even brief in vitro exposure to inflammasome-activating mediators negates the suppressive potential of cultured murine and human-derived MDSCs. Consistent with a role for the inflammasome, donor MDSC deficient in the adaptor ASC (Apoptosis-associated speck-like protein containing a CARD), that assembles inflammasome complexes, conferred improved survival of mice developing GvHD compared to wild-type donor MDSC. These data suggest the use of MDSC as a therapeutic approach for preventing GvHD and other systemic inflammatory conditions will be more effective when combined with approaches limiting in vivo MDSC inflammasome activation empowering MDSCs to maintain their suppressive potential

    Oncogenic JAK2causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms

    No full text
    Recent evidence has revealed that oncogenic mutations may confer immune escape. A better understanding of how an oncogenic mutation affects immunosuppressive programmed death ligand 1 (PD-L1) expression may help in developing new therapeutic strategies. We show that oncogenic JAK2 (Janus kinase 2) activity caused STAT3 (signal transducer and activator of transcription 3) and STAT5 phosphorylation, which enhanced PD-L1 promoter activity and PD-L1 protein expression in JAK2(V617F)-mutant cells, whereas blockade of JAK2 reduced PD-L1 expression in myeloid JAK2(V617F)-mutant cells. PD-L1 expression was higher on primary cells isolated from patients with JAK2(V617F)-myeloproliferative neoplasms (MPNs) compared to healthy individuals and declined upon JAK2 inhibition. JAK2(V617F) mutational burden, pSTAT3, and PD-L1 expression were highest in primary MPN patient-derived monocytes, megakaryocytes, and platelets. PD-1 (programmed death receptor 1) inhibition prolonged survival in human MPN xenograft and primary murine MPN models. This effect was dependent on T cells. Mechanistically, PD-L1 surface expression in JAK2(V617F)-mutant cells affected metabolism and cell cycle progression of T cells. In summary, we report that in MPN, constitutive JAK2/STAT3/STAT5 activation, mainly in monocytes, megakaryocytes, and platelets, caused PD-L1-mediated immune escape by reducing T cell activation, metabolic activity, and cell cycle progression. The susceptibility of JAK2(V617F)-mutant MPN to PD-1 targeting paves the way for immunomodulatory approaches relying on PD-1 inhibition

    Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    No full text
    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B. Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA. MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI

    Erratum : Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

    No full text
    This corrects the article DOI: 10.1038/nm.4484

    Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

    No full text
    corecore